A SUFFICIENT CONDITION FOR HYPOELLIPTICITY OF OPERATORS OF ORDER ONE

K.H. Kwon and B.H. Yoo

1. Introduction

A linear differential operator P with C^{∞} coefficients defined in an open set $\Omega \subset \mathbb{R}^n$ is called to be hypoelliptic if for any $u \in D'(\Omega)$ and any open set $\Omega_1 \subset \Omega$, $Pu \in C^{\infty}(\Omega_1)$ implies that $u \in C^{\infty}(\Omega_1)$.

In [2], Radkevic and Oleinik gave a sufficient condition for the hypoellipticity of linear differential operators of any order satisfying a priori estimate. In this work, we shall give the same result assuming only the first 3 conditions of Radkevic and Oleinik when the differential operator is of order 1 (cf. Theorem 1. and Remark 1.). Our proof uses the method of microlocalized estimation (cf. [3]), which is considerably simpler than that of Radkevic and Oleinik.

We use the following notation for the symbol $p(x,\xi)$ of differential operator P(x, D); for any multi-indices α and β ,

$$p^{(\alpha)}(x,\xi) = \frac{\partial^{|\alpha|}p(x,\xi)}{\partial \xi^{\alpha}}, \quad p_{(\alpha)}(x,\xi) = D_{x}^{\alpha}p(x,\xi),$$

$$p_{(\beta)}^{(\alpha)}(x,\xi) = \frac{\partial^{|\alpha|}D_{x}^{\beta}p(x,\xi)}{\partial \xi^{\alpha}},$$

$$p^{(j)}(x,\xi) = \frac{\partial}{\partial \xi_{j}}p(x,\xi), \quad p_{(j)}(x,\xi) = D_{j}p(x,\xi) \text{ for } j=1,\dots,n.$$

The operators $P^{(\alpha)}$, $P_{(\alpha)}$, $P_{(\beta)}^{(\alpha)}$, $P^{(j)}$ and $P_{(j)}$ are obtained from the corresponding symbols by replacing the vector ξ by the vector (D_1, \dots, D_n) .

We denote by Ψ^m the space of all mth order pseudodifferential operators of classical type, $\Psi^{-\infty} = \bigcap_m \Psi^m$ and $\Psi^{\infty} = \bigcup_m \Psi^m$.

Received May 17, 1988.

Partially supported by Ministry of Education and KOSEF.

2. Hypoellipticity

THEOREM 1. Let Ω be an open subset in R^n . Let P be a first order differential operator on Ω with coefficients in $C^{\infty}(\Omega)$ for which the following conditions are fulfilled:

I. For each compact set $K \subset \Omega$ there exists a constant $s_0 = s_0(K)$ such that for sufficiently large N > 0 the inequality

$$(2.1) ||u||_{s_0}^2 \le c(K,N)||u||_{-N}^2 + c(K)||Pu||_0^2$$

holds, where $-N < s_0$ and $u \in C_0^{\infty}(K)$.

II. For each compact set $K \subset \Omega$, $s \in \mathbb{R}^1$ and $\delta_1 > 0$, there exists a constant $c(K, s, \delta_1, N)$ such that for sufficiently large N > 0 the inequality

holds, where $-N < s + s_0$, $u \in C_0^{\infty}(K)$.

III. For each compact set $K \subset \Omega$, $s \in \mathbb{R}^1$ and sufficiently large N, the inequality

holds, where $\mu=\mu(K)>0$, $-N < s+s_0$, $u \in C_0^{\infty}(K)$.

Then for any $u \in D'(\Omega)$ such that Pu belongs to $H_{loc}^s(\Omega)$ we have the estimate

where the functions ϕ , $\phi_1 \subseteq C_0^{\infty}(\Omega)$, $\phi_1 = 1$ on supp ϕ . In particular, P(x, D) is hypoelliptic.

REMARK 1. When P(x, D) is of arbitrary order, it was shown in [2] that it is hypoelliptic if we assume, in addition to the three conditions in Theorem 1, that

IV. For each compact set $K \subset \Omega$, $\delta_1 > 0$, $s \in \mathbb{R}^1$ and sufficiently large N > 0, the inequality

(2.5)
$$\sum_{j=1}^{n} ||P^{(j)}u||_{s}^{2} \leq \delta_{1} ||Pu||_{s}^{2} + C(\delta_{1}, N, s, K) ||u||_{-N^{2}}$$

holds, where $-N < s + s_0$, $u \in C_0^{\infty}(K)$.

We need the following lemma which is proved in [2].

LEMMA 1. If P satisfies II and III, then for each compact set $K \subset \Omega$, $s \in \mathbb{R}^1$ and sufficiently large N > 0 the inequality

$$(2.6) ||P_{(\beta)}^{(\alpha)}u||_{s}^{2} < c(\alpha, \beta, s, K) \{||Pu||_{s+1\beta+-u}^{2} + c(N)||u||_{-N}^{2}\}$$

holds, where $|\alpha| \ge 1$, $u \in C_0^{\infty}(K)$.

Proof of Theorem 1. We first show that the estimate (2.1) can be localized, that is, $\|\phi u\|_{s_0} \leq c(\|\phi_1 P u\| + \|\phi_1 u\|_{-N})$ for any $u \in C^{\infty}(\Omega)$, where ϕ and ϕ_1 are the same as in Theorem 1. By (2.1), we have

$$||\phi u||_{s_0} \leq c(||P\phi u|| + ||\phi u||_{-N})$$

$$\leq c(||\phi P u|| + ||[P, \phi]u|| + ||\phi u||_{-N})$$

$$\leq c(||\phi_1 P u|| + ||\phi_1 u||_{-N} + ||[P, \phi]u||).$$

Choose $\{\phi_j\}_0^{\infty} \subset C_0^{\infty}(\Omega)$ such that $\psi_0 = \phi$, supp $\psi_j \subset \text{supp } \psi_{j+1} \subset \cdots \subset \text{supp } \phi_1$ and $\psi_{j+1} = 1$ on supp ψ_j .

Then

$$[P,\psi_j]u = \sum_{|\alpha| \geq 1} \frac{1}{\alpha!} D_x^{\alpha} \psi_j(x) P^{(\alpha)} u = \sum_{|\alpha| \geq 1} \frac{1}{\alpha!} D_x^{\alpha} \psi_j(x) P^{(\alpha)} \psi_{j+1} u.$$

We have, by Lemma 1, that

$$||D_{x}^{\alpha}\phi(x)P^{(\alpha)}\psi_{1}u|| \leq c||P^{(\alpha)}\psi_{1}u|| \leq c(||P\psi_{1}u||_{-\mu} + ||\psi_{1}u||_{-N})$$

$$\leq c(||\psi_{1}Pu||_{-\mu} + ||[P,\psi_{1}]u||_{-\mu} + ||\psi_{1}u||_{-N})$$

$$\leq c(||\phi_{1}Pu|| + ||\phi_{1}u||_{-N} + ||[P,\psi_{1}]u||_{-\mu}).$$

Similarly, we have

$$||D_{x}^{\alpha}\psi_{1}(x)P^{(\alpha)}\psi_{2}u||_{-\mu} \leq c||P^{(\alpha)}\psi_{2}u||_{-\mu} \leq c(||\phi_{1}Pu|| + ||\phi_{1}u||_{-N} + ||[P, \psi_{2}]u||_{-2\mu}).$$

Repeating the same process, we have

$$\begin{aligned} ||D_{x}^{\alpha}\psi_{l-1}(x)P^{(\alpha)}\psi_{l}u||_{-(l-1)\mu} &\leq c||P^{(\alpha)}\psi_{l}u||_{-(l-1)\mu} \\ &\leq c(||P\psi_{l}u||_{-l\mu} + ||\psi_{l}u||_{-N}) \\ &\leq c(||\psi_{l}u||_{-l\mu+1} + ||\phi_{l}u||_{-N}). \end{aligned}$$

If l is so large that $-l\mu+1 \le -N$, then

$$||\psi_l u||_{-l\mu+1} \le c||\psi_l u||_{-N} \le c||\phi_1 u||_{-N}.$$

Consequently, we have

$$||[P,\phi]u|| \le c(||\phi_1 P u|| + ||\phi_1 u||_{-N}).$$

Now we show that the estimate (2.1) can be microlocalized. Let $s(\delta) = s(\delta, x, D) = \psi(2\delta D)\phi(x)$ and $s_1(\delta) = s_1(\delta, x, D) = \psi(\delta D)\phi_1(x)$ where $\psi(\xi) \in C_0^{\infty} \left(|\xi| \le \frac{3}{2} \right), 0 \le \psi(\xi) \le 1, \psi(\xi) = 1 \text{ for } |\xi| \le 1.$ Then,

$$(2.7) \ \mathfrak{s}_1(\delta, x, \xi) = 1 \ \text{on supp} \ \mathfrak{s}(\delta, x, \xi) = \left\{ (x, \xi) \, | \, x \in \text{supp} \ \phi, \ |\xi| \leq \frac{3}{4\delta} \right\}.$$

- (2.8) $s(\delta)$, $s_1(\delta)$ are bounded in Ψ^0 for $0 < \delta < 1$, self adjoint, and $s(\delta)$, $s_1(\delta) \in \Psi^{-\infty}$.
- (2.9) $s(\delta)As_1(\delta) = s(\delta)A + R_1(\delta)$ for any $A \in \Psi^{\infty}$, with $R_1(\delta) \in \Psi^{-\infty}$ bounded.
- (2.10) $s_1(\delta) A s(\delta) = A s_1(\delta) + R_2(\delta)$ for any $A \subset \Psi^{\infty}$, with $R_2(\delta) \subset \Psi^{-\infty}$ bounded.

Of course, we assume that $\varsigma(\delta)$ and $\varsigma_1(\delta)$ are properly supported and supports of their distribution kernels are contained in a sufficiently small neighborhood of the diagonal of $\Omega \times \Omega$. On the other hand, we can easily obtain that for any $u \in D'(\Omega)$, $\varsigma(\delta)u \in C_0^{\infty}(\Omega)$ and they have supports in a fixed compact subset of Ω independent of $\delta > 0$.

Since $\{[P, \varsigma(\delta)] | 0 < \delta < 1\}$ is bounded in Ψ^0 ,

(2.11)
$$||s(\delta)u||_{s_0} \leq c(||Ps(\delta)u|| + ||s(\delta)u||_{-N})$$

$$\leq c(||s(\delta)Pu|| + ||[P, s(\delta)]u|| + ||s(\delta)u||_{-N})$$

$$\leq c(||s_1(\delta)Pu|| + ||s_1(\delta)u|| + ||s_1(\delta)u||_{-N})$$

$$\leq c(||s_1(\delta)Pu|| + ||s_1(\delta)u||).$$

Now we replace L^2 -norms in (2.11) by H^s -norms. If Λ^s =op(1+ $|\xi|^2$) $^{s/2}$ $\in \Psi^s$, pseudodifferential operator with symbol (1+ $|\xi|^2$) $^{s/2}$ which is modified to be properly supported, then we apply (2.1), with u-replaced by $\Lambda^s u$, $\varsigma(\delta)$ by $\varsigma^s(\delta) = \Lambda^s \varsigma(\delta) \Lambda^{-s}$ and $\varsigma_1(\delta)$ by $\varsigma_1^s(\delta) = \Lambda^s \varsigma_1(\delta) \Lambda^{-s}$. Then we see that

$$(2.12) \quad \|\mathbf{s}(\delta)u\|_{s+s_0} = \|\mathbf{s}^s(\delta)\Lambda^s u\|_{s_0} \\ \leq c(\|P\mathbf{s}^s(\delta)\Lambda^s u\| + \|\mathbf{s}^s(\delta)\Lambda^s u\|) \\ \leq c(\|P\Lambda^s\mathbf{s}(\delta)u\| + \|\mathbf{s}(\delta)u\|_{s}) \\ \leq c(\|[P,\Lambda^s\mathbf{s}(\delta)]u\| + \|\Lambda^s\mathbf{s}(\delta)Pu\| + \|\mathbf{s}_1(\delta)u\|_{s}) \\ \leq c(\|[\mathbf{s}_1(\delta)u\|_{s}^{s} + \|\mathbf{s}_1(\delta)Pu\|_{s}).$$

This completes the proof of the inequality (2.4).

Now we will show that the inequality (2.4) implies the hypoellipticity of P(x,D). Assume that $Pu = H_{loc}^s(\Omega)$. By schrinking Ω , we may assume that $u = H_{loc}^t(\Omega)$ for some t. If $t \ge s$, then $u = H_{loc}^t(\Omega)$ implies that $||s(\delta)u||_{s+s_0} < \infty$ independent of δ . Thus $u = H_{loc}^{s+s_0}(\Omega)$.

If t < s, then $u \in H_{loc}^t(\Omega)$ and $Pu \in H_{loc}^t(\Omega)$ implies that $u \in H_{loc}^{t+s_0}(\Omega)$ by (2.12). Continuing this process we have $u \in H_{loc}^{s+s_0}(\Omega)$. Since $C^{\infty}(\Omega) = \bigcap_{s \in R} H_{loc}^s(\Omega)$, $Pu \in C^{\infty}(\Omega)$ implies $u \in C^{\infty}(\Omega)$.

References

- 1. L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- O.A. Oleinik and E.V. Radkevic, Second order equations with nonnegative characteristic form, Math. Analysis 1969, Itogi Nauk, Moscow, 1971; English transl., Symposia Math., vol. 7, Academic Press, 1971.
- 3. M. Talyor, Pseudodifferential operators, Princeton University Press, 1981.
- 4. F. Treves, Introduction to pseudodifferential and Fourier integral operators, vol. 1, Plenum Press, N.Y., 1980.

KAIST P.O. Box 150 Cheongryang Seoul 130-650, Korea