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A SUFFICIENT CONDITION FOR HYPOELLIPTICITY OF .
) OPERATORS OF ORDER ONE

K.H. Kwon axo B.H. Yoo ..

1. Introduction - B " o

A linear differential operator P with C* coefficients defined in an
open set RQCR” is called to be hypoelliptic if for any u&D/(2) and
any open set 2,0, PucC~(R;) implies that u=C*(£,).

In [2], Radkevic -and Oleinik gave a sufficient condition for the
hypoellipticity of linear differential operators of any order satisfying a
priori estimate. In this work, we shall give the same result assuming
only the first 3 conditions of Radkevic and Oleinik when the differential
operator is of order ] (cf. Theorem 1. and Remark 1.). Our proof
uses the method of microlocalized estimation (cf. [3]), which is
considerably simpler than that of Radkevic and Oleinik.

We use the following notation for the symbol p(x,&) of dlfferentlal
operator P(z, D); for any multi-indices a and 8,

t

P (z, )= 2ZE) (o &)y=Dp(x, £),

0&*
lat [
: ‘P(ﬁ)~(“) (z,8)=-2 Dasji(x E)
(2, 8) =—2 GE 5(2,8), bz, B)= Dip(z, 5) for j=1,-

The operators PP, P, PG and P<,>\ are obtained from the
corresponding symbols by replacing the vector & by the vector (Dy, -+,
D)y> _

We denote by ¥™ the space of all mth order pseudodifferential
operators of classical type, ¥ ==, ¥™ and ¥*=), 0"
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2. Hypoellipticity

THEOREM 1. Let 2 be an open subset in R*. Let P be a first order
differential operator on 2 with coefficients in C~(2) for which the
Sollowing conditions are fulfilled:

1. For each compact set KCQ there exists a constant so=s0(K) such that
Sor sufficiently large N >0 the inequality

2.D leellss®<e (K, N) llell-w*+ ¢ (K) | Pullo?

holds, where —N< sy and u=Cy"(K). _
II. For each compact set KC R, s=R* and 5, >0, there exists a constant
c(K,s, 8, N) such that for sufficiently large N >Q the inequality

2.2) i.'l!lP @l || Pulleri®+e (K, s, 61, N) llull»*
=

holds, where —N<s+s,, u=Cy”(K).
HI. For each compact set KC2, s&=R' and sufficiently large N, the
inequality

2.3) ;§IIP Pul|2<e (K, 9) {I1Pulls— s +c (N llull-~?}

holds, where p=p(K)>0, —N<s+s, u=Cy”(K).
Then for any u=D’(2) such that Pu belongs to H., (2) we have the
estimate

2.9 lgllers,?<<c(g0) {lig:Pull.+llg.ll2},

where the functions ¢, $<=Co”(2), ¢1=1 on supp ¢. In particular, P(z, D)
is hypoelliptic.

REMARK 1. When P(x, D) is of arbitrary order, it was shown in [2]

that it is hypoelliptic if we assume, in addition to the three conditions
in Theorem 1, that

IV. For each compact set KC#2, §,>0, s<=R' and sufficiently large
N>0, the inequality
(2.5) SIPCull2<o,IPull2+C (@, N, 5, K llall-x?
]=

holds, where —N<s+s,, 2=C,~(K).
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We need the following lemma which is proved in {2].

LEMMA 1. If P satisfies II and III, then for each compact set K2,
S&ER! and sufficiently large N >( the inequality

(2.6) lIPw“ullf<c(a, B, s, K) {l1Pullss 151> +c(N) |lul]_n?}
kolds, where |a|>1, u=Cy"(K).
Proof of Theorem 1. We first show that the estimate (2.1) can be

localized, that is, llgull,,<c(llg,Pull+|l¢,ull_y) for any u=C~(L2), where
¢ and ¢, are the same as in Theorem 1. By (2.1), we have

lgaells,<c (1 Pul| +llpullx)
<c(llgPull + I[P, ¢Jull+llgull )
<c(ll¢Pull+ g ull-n+ I[P, ¢Jull).

Choose {¢;}0"CCo”(2) such that ¢o=¢, supp ¢;supp ¢;s, -
supp ¢; and ¢;;;=1 on supp ¢;.
Then

[P, ¢Ju= 35 Dt (@) POum 5 Dy (@) POy

_l?‘_!_ alz1
We have, by Lemma 1, that
ID:2¢ () P prull <c|| P Pyaul| e (|| Pyl -+ lihrell-n)

<c(l¢Pull_x+ILP, 1 ]ull_y+llsullx)
<c(lig:Pull + ligszll v+ I[P, 1 Jull-,).

Similarly, we have
D2y (2) P o]y || P ]|,
<c(llg,Pull + szl -x + I[P, Po]ull_2.).

Repeating the same process, we have

ID:*p1; () P Pyu]|— 1) o IP “ Prta] — 11>
<c (| Putell 1+ petell_n)
<c(llpwll o1+ gl —x)-

If [ is so large that —Ilp+1<<—N, then

lprzell 111 Zellpzell -v<ecll$ r2el | -n.
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Consequently, we have-- --. © - = - = - - = -

—

e P, ¢]wl|<6(ll¢1PuH+ If¢1ull-~)

Now we show that the est4mate (2 l) can be mlcrolocahzed Let
§(8) =54, =, D) ¢(25D)¢(:u) and 's; (8) =$, (3, z; D) =¢(6D) ¢, (z) where

¢(5)eco€°(|5|§§-), 0<¢(®)<1, ¢(&)=1 for |¢|<I. Then, = .

27,5105, =1 on supp 506,59 = (2, & le=supp 6, [61<3).

(2.8) s(8), $,(9) are-bounded in ¥° for 0<6<1, self adjoint, and
$(d), s, (0= T
(2.9) s(0)As5,(8)=(B)A+R,(8) for any A= ¥~, with R,(O) ¥™™
bounded.
(2.10) s,(0)As(8)= A91(6)+R2(6) for any A= ¥~, with RZ(E)E g
- bounded.

Of course, we assume that $(8) and ¢,(6) are properly supported and
supports of their distrubution kernels are contained in a sufficiently small
neighborhood of the diagonal of 2x£. On the other hand, we can
easily obtain that for any w=D’(2), s(@)u=C,"(2) and they have
supports in a fixed compact subset of 2 independent of §>>0.

Since {[P,s(3)]]0<d<1} is bounded in ¥,

21D lis@ully=c(liPs @)ull+ls (@) ull-x)
’ *Zc(lls(8) Pull+IILP, $(8) Jull +1Is (8 ul| —x)
Ze(ll§: () Pall+Is1 (&) zell +1ls: (8) ull-n)
<e(lis1(8) Pull +lls; (8) «ll). .

Now we replace L?-norms in (2.11) by He-norms. If A=op(1+
1£12)*/2<¥*, pseudodifferential operator with symbol (1+ |£|2)*/? which
is modified to be properly supported, then we apply (2.1), with «-.
replaced by 4u, $(6) by (8= /1‘9(6)/1”“ and 5‘1(5) by s (8) =4
$,(8) 4. Then we .see that - - . _

(2.12) l?ﬁ(’b‘)ulfs+so=ﬂ?‘(5)/1‘ulls.,
nr ZellPs (@) Aull+ |Is*(3) Aull)
Sc(IPas (@) ull+]Is (8) ull) N
<c(lILP, /1’9(5)]ull+ll/1’9(5)1’ull+I|91(5)ull)
ey @yall:+1le (@) Pull).
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This completes the proof of the inequality (2.4).

Now we will show that the inequality (2. 4) implies the hypoellipticity
of P(x,D). Assume that Pu=H,,(2). By schrinking 2, we may assume
that «=H,(2) for some ¢ If t>s, then u=H,!'(Q) implies that
lIs (@) #lls+s,<lco independent of 3. Thus u&=H, o (2).

If t<s, then u=H,'(Q) and PucH,,'(2) implies that uc=H, **(Q)
by(2.12). Continuing this process we have u=H,, **(2). Since C~(2)
= (VserHL(2), Pu=C=(Q) implies uc=C=(Q).
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