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*A NOTE ON THE CLIFFORD MODULES

KEEAN LEE AND SUNGHEE KANG

1. Introduction

It is well known that the theory of Clifford moudles is used to prove
the Bott periodicity theorems in K-theory. There are difficult parts to
understand in the theory of Clifford modules, for example Corollary
3. 3. The purpose of this note is to introduce Theorem 3. 2 and to prove
Corollary 3. 3 using Proposition 2. 1 and Theorem 3. 2.

2. Basic concepts and notations

Let R" he the n-dimensional real space (n>O). For x, yER" let
(x, y) he the inner product defined by XIYl +... +X"Y", where x= (Xl>
•..• x,,) and x= (Yl> •••y,,). Then the quadratic form (R", Q) is defined
by a function Q : R"-+R satisfying

(i) for aER, xER" Q(ax)=a2Q(x)
(ii) for xER"

Q(x)=-(x,x)

is a symmetric bilinear form ([2J, [3J, [4J).

The Clifford algebra of the quadratic from (R", Q) is a pair (C(Q),O),
where C(Q) is a R-algebra and 0 : R"-+C(Q) is a linear function such
that for all xER" (0(x))2=Q(x)·1 where 1 is the unit element
of C(Q). Moreover, (C(Q),O) satisfies the following universal property.
For any R-algebra A and any homomorphism on the underlying vector
spaces cp : R"-+A such that (cp(X)2=Q(X) 01, where xEB" and 1 is the
unit element of A, there is a unique algebra homomorphism cjJ : C(Q)---+
A making the following diagram commutative

Received June 27, 1988, in revised form August 3(), 1988.
* The present studies were supported by the Basic Science Reserch Institute Program,

Ministry of Education, 1987.

- 133-



134 Keean Lee and Sunghee Kang

o
Rn---------+C(Q)'" .....'" ....cp", <jJ

'\../
A

In the sequel, we shall put (C(Q) , 0) =Cn• If we take

(ii) Q(x) = (x, x) for x, yERn

instead of (ii) above, we shall put (CCQ), 0) =Cn'.
In Rn, we put

e= (1,0, ···,0), .. , , en = (0, "',0,1)

Then {eh .", en} generates Rn. Consider the tensor algebra T(Rn) =
'L,Tk(R)='L,ai,".i. ei/2)···0ei., where ai""i.ER and l<ih ···,ik<n,
k>O k>O

and the two-side ideal I(Q) generated by the elements x0x-Q(x)·1
in T(Rn). Then

Thus there is the canonical epimorphism

which is a Z2-grading, where

and 1 together with the products e· tVI •• • tVle· =e· ···e· form a base of
~1\()1 v:Y J,\ '1 '"

Cn. We have to note that
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in Ck, where l<i*j<k.
A Z2-graded module M over the Z2-graded algebra Ck is a Ck-module

M with M=M°(J}MI such that for i, jEZ2

A Clifford module is a Z2-graded module over a clifford algebra.
Let 1(Ck ) (=1 k ) denote the free abelian group with irreducible

Z2-graded Ck-module as free generators, and let .A/(Ck) denote the
free abelian group with irreducible Ck as free generators.

We have the following isomorphisms (DJ, [2J) :

(i) For xERk- {O}, A(x): Ck~Ck is the inner automorphism
A(x) (a) =xax-l and A(x) \Cko=A(x)O, where X-I is the inverse of x
which is defined as follows.

For each x=alel + +akek

(aIel + +akek) • ( aIel + +akek ) =-1
a1 2 + +ak2

and thus

(ii) f3: Ck°(J}CkO=Ck~Ck°(J}Ckl=Ck,

W W
by XO+XI 1----+ XO-XI

(iii) ifJ: Ck~C2+1 which is defined by ifJ(XO+XI) =xO+ek+1XI for
each xOECko and xIECkl.

(iv) For each Ck-module M=M°(J}MI where C(M)o=MI and C(M)I
=MI.

For each graded Ck-module M=M°(J}MI we define a functor R such
that R(M) =Mo, where MO is a Cko-module. Then R : 1 k-4.A/(CkO)
is a group-homomorphism for each k>O ([2J).

PROPOSITION 2. 1. The following diagram are commutative :

1 R
1 k+1+----1k+1--~(C~+1)

I I I
c1 1 1A(x~ 1A(x)O*

1 k+1+----1k+1--~ (q+1)
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lor xERk- {O}.

Pool. Let M be a generator of 1 k+l. In A(x)*M=Z, we have the
following: for each aECk

[

Example; Let x=ei, aECko
+aZ If ei is not a factor of a, then +aZ.

If ei is a factor of a, then -aZ.

because aZ=xax-1z. If we put Z=xM, then

[

Example; Let x=ei, aECko
+a(xM) If ei is not a factor of a, then +a(xM).

If ei is a factor of a, then -a(xM).

Therefore A(x)*M=Z=xM. Thus

ZO=xMo=Ml and Zl =XMl=MO
=C(M)O =C(M)l

This implies that the left square in the above diagram is commutative.
For each generator M=MoEBMl of 1k+l

and thus the right square is also commutative.

3. Main results

The tensor product of two Zz-graded algebras Ck and Cl, denoted
/'..

CiC?.9CI, is the tensor product of the underlying modules with

/'..

(Ck@C/)O=Ck\~9RC/oEBCkl@RCl,
/'..

(Ck@C/) 1=CN?;>RC/EBCl@RC/O

and the multiplication given by

/'.. /'.. /'..

(x@y)(x'@y') =( -l)ii(xx')@(yy')

for X'ECki and yEC/. Note that for xECki we have xy=(_I)ii yx.
An isomorphism
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is defined by the relations
,A..

SOk,l(ei) =ei@l for 1<i<k

and
,A..

SOk,l(ej) = 10ej_k for k<j<k+ 1

DEFINITION 3. 1. We define an antiautomorphism

and an automorphism
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,A.. ,A.. ,A..

as follows. For xl2)y/::::::.Cki0C/, T(Xi0Yj) = (-l)iiYj@Xi, and (1=

CPI,k-
l

• T·SOk,1 where Ij;k,1 and rpl,k are given in the following diagram:

SOk,1 ,A..

Ck+/------+Ck@C1

"" /
CPI, k"" / T

'\./
CI@Ck

THEOREM 3.2. Forei,ej, etECk+/ O<i,j,t<k+l) and y=(ei+ej)/ ";2
the following holds.

( i) If j=i+ 1, then A(y)ei=ei+h A(y)ei+l =ei
(ii) If ii=-j and ii=-ti=-j, then A(y)et= -et.
(iii) If ii=-j then A(y)ei=ej and A(y)ej=ei.

Proof. It is clear that for ii=-j

(i) A(y)ei=

and similarly,

A(y)ei+l =ei.

(ei +ei+l) (l-eiei+l)
2
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(ii)

(Hi)
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A(y)et e.+ej (e) (_ e.+ej )
-121 t -12

= e,~/;j • (_ e:/;j__ ) (-et) = -et.

By the same way as in proof (i) we can easily obtain.

A(y)e.=ej and A(y)ej=e•.

Let M be a Zz-graded Ck-module and let N be a Zz-graded Cl-module.
/"-

The Zz-graded tensor product M@N is the ordinary tensor product with
the grading

and

/"­

and with the following multiplication by Ck@CI :

/"- /"- /"-

(a@b)(x@y)=( - I)iiax@by for bECt' and xEM!.

Take generators ME.Lk and NE.Lz, and recall the isomorphism

Then

({Jk,l* : .Lii!)z.LI---1k+l

is a group homomorphism and thus

becomes a grading ring ([1], [2]).

CoROLLARY 3.3. For uE1k and vE.L1

{
VU if kl is even

uv= c(vu) if kl is odd.

Proof. At first we have to note that
(i) C=A(y)* (YERk_O)
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(ii) Ck = {Cl if k is even
if k is odd

by Proposition 2. l.
By Definition 3. 1
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Our proof is divided into two steps.
Step I. The case when kl is even:
(i) k and 1 are both even.

By (i) of Theorem 3.2

a(ei) =A(y,) ···A(Y1)ei=ei+'

and

a(ei) =A(y/) ···A(y!')ei=ei_k

where

(k<i<k+l)

and

Y'= ei_l+ei y'
-./2'···' k

That is, a*=C' or a*=Ck and thus a*=Cke in this case.
(ii) k is even and 1 is odd.
For ei(I<i<k)

A(Y1)ei=ei+1 where Y1 =ei+ei+ll -./2:

and we take the action of (ii) of Theorem 3. 2 of k-times. Repeatting
this way, we have a*=Ckl. For ej(k<j<k+l) a*=Ck=Ck'.

For a(eiej) (1<i<k, k<j<k+l) we have

a(eiej) =a(ei)a(ej)

and thus
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For other cases, it is clear that a*=Ckl.
If k is odd and I is even, then by the same method as above we have

a*=Ckl. Since q=CPlk-I.T·CPk,1 CPl,k"q=T·CPkl and a* CPI,k*=CPk,l*oT*. Let
M be a generator of 1 k and let N be a generator of 1 1•

Then

and thus

/'.. /'..

CklCP1,k*(M@N) =CPk,I*(N@M).

Since kl is even and Ckl=l we have

/'.. /'..

CPl,k*(M@N)=CPk,I*(N@M).

Step ll. The case when kl is odd, i.e., k and I are both odd. Note
that kl=k=1 (mod. 2).

For e;(l<i<k) and ej(k<j<k+l) q(ei) is equal to inner automorphism
of I-times and q(ej) is the same as inner automorphisms of k-times.
Hence in this case, q*=Ck=C'=Ckl=C.

For q(e;ej), by (i) and (ii) of Theorem 3.2 we have the following:

inner automorphisms of I(k-l) +1=kl-times
if l<r::j::.j<k

=q(ei)q(ej) =

inner automorphisms of I(k-l) +k times
if l<i<k and k<j<k+1

In this case, since I(k- 1) +k=kl (mod. 2) we have

a*=Ckl=C.

For other case, we use the same method as above.
Consequently, q*=C when k and I are both odd.

In general, we have q*=Ckl and our proof is complete.
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