PRIME NEAR-RINGS

CHUL KON BAE

1. Introduction

R.E. Johnson [2] obtained many interesting results in the theory of prime modules and annihilator ideals.

In this paper, we consider the basic properties of prime near-ring modules and find a similarity of prime submodules and annihilator left ideals. The main result is as follows: If N is a distributive near-ring, then the lattices \mathcal{U}_r and \mathcal{U}_l are anti-isomorphic.

2. Preliminaries on near-rings

We begin with some definitions and some results.

Throughout this paper, N will denote a (right) near-ring. A (near-ring) module is an algebraic system $_{N}M$ which is an additive group and N is a near-ring, together with a mapping $(n, m) \mapsto nm$ from $N \times M$ into M with the following properties:

$$(n_1+n_2)m=n_1m+n_2m$$
 and $(n_1n_2)m=n_1(n_2m)$ for all $n_1, n_2 \in \mathbb{N}, m \in M$.

If there is no danger of confusion, we will speak of the module M instead of the module NM and if we wish to emphasize the near-ring N, we will speak of N-module M.

Let M be a N-module. Then a subgroup A of M is called a N-subgroup of M if

$$NA = \{na \mid n \in \mathbb{N}, a \in A\} \subseteq A.$$

Let A be a subset of a N-module M. A is called a N-submodule of

Received April 29, 1988, in revised form July 2, 1988.

Partially supported by Korean Science and Engineering Foundation.

M if it is a normal subgroup of M and if for all $n \in \mathbb{N}$, $m \in M$, $a \in A$, $n(m+a)-nm \in A$. Clearly if A is a N-subgroup (left ideal) of a nearring N, then A may be regarded as N-subgroup (N-submodule) of N.

Let M be a near-ring module and let H be a submodule of M and L a N-subgroup of M. Then $H+L=\{x+y|x\in H,\ y\in L\}$ is a N-subgroup of M and H+L=L+H. Moreover if L is a submodule, then H+L is a submodule of M.

The left ideal generated by $A \subseteq N$ is denoted by (A|, and the submodule generated by $B \subseteq_N M$ is denoted by (B|. Let M be a N-module. Then a subset T of M is called a *full generator* (fg) for M if every submodule of M is generated by a subset of T.

Notation and terminology not defined here follow Pilz [6].

3. Characterizations of prime near-rings

DEFINITION 1. An ideal P of a near-ring N is called *prime* if $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$, for any ideals A and B of N.

N is called a prime near-ring if (0) is a prime ideal.

Every integral near-ring is a prime near-ring and each constant near-ring is a prime near-ring. Of course N is a prime ideal of N, so (0) is a prime near-ring.

DEFINITION 2. Let M be a N-module. Then a submodule B of M is called *prime* (weakly prime) if $LB'\subseteq B$ implies $B'\subseteq B$, for any nonzero left ideal L of N and N-subgroup (submodule) B' of M.

M is called a prime near-ring module if (0) is a prime submodule of M.

DEFINITION 3. A left ideal L of a near-ring N is called *prime* if L is a prime submodule of $_{N}N$.

N is called a strictly prime near-ring if NN is prime.

REMARK 1. Let A be a nonzero ideal of a near-ring N. Then A can not be contained in a prime left ideal $I \neq N$. For $AN \subseteq A \subseteq I$ implies that $N \subseteq I$. Hence the concept of a prime left ideal has no content in a commutative near-ring.

REMARK 2. Even a noncommutative near-ring N must be a prime near-ring if it is to have any prime left ideal other than N. For let AB=(0), A and B nonzero ideals of N, then $B\subseteq I$, for any prime left

ideal I of N. Hence I=N, by our previous remark 1.

REMARK 3. Let M be a prime near-ring module. Then both (0) and M are prime submodules of M.

Every constant near-ring is a prime near-ring but not strictly prime near-ring. If a near-ring N with identity has no nonzero proper left ideal of N, then a submodule of a unitary N-module M is prime.

If a near-ring N can be regarded as a near-ring module. Then many of the result that follow on prime submodules of N give theorems on the prime left ideals of N.

THEOREM 4 [6, 2.95]. Let N be a zero symmetric near-ring with identity. Then if $_{N}M$ is a prime near-ring module, then N is a prime near-ring (but not conversely). In particular, if N is a strictly prime near-ring, then N is a prime (but not conversely even if N is finite).

THEOREM 5. Let N be a zero symmetric near-ring, M_1 be a N-subgroup of a N-module M such that M_1 is a fg for M, and let Q be a submodule of M. If $M_1 \cap Q$ is a weakly prime submodule in M_1 , then Q is a weakly prime submodule in M.

Proof. Suppose $P=M_1\cap Q$ is weakly prime in M_1 . Let L be any nonzero left ideal of N and A a submodule of M such that $LA\subseteq Q$. Then $L(A\cap M_1)\subseteq LA\cap M_1\subseteq Q\cap M_1=P$. Since $P=M_1\cap Q$ is a weakly prime submodule in M_1 , $A\cap M_1\subseteq P$. Now M_1 is a fg for $M_1=Q\cap M_1$ for $M_1=Q\cap M_1$. Thus Q is a weakly prime submodule in M.

THEOREM 6. Let $\{A_{\alpha} | \alpha \in I\}$ be a family of prime submodules of M. Then $\bigcap_{\alpha \in I} A_{\alpha}$ is again prime. Thus every submodule A of M has a unique prime cover P(A) consisting of the intersection of all prime submodules containing A.

Proof. Let $LA \subseteq \bigcap_{\alpha \in I} A_{\alpha}$, A a N-subgroup of M and L a nonzero left ideal of N. Then $LA \subseteq A_{\alpha}$ for all $\alpha \in I$. Since A_{α} is a prime submodule of M, $A \subseteq A_{\alpha}$ for all $\alpha \in I$. Hence $A \subseteq \bigcap_{\alpha \in I} A_{\alpha}$.

LEMMA 7 [6, Theorem 2.20]. Let M be a N-module and L(M) be the set of all submodules of M. Then L(M) is a complete (modular) lattice.

DEFINITION 8. A closure operation on a complete lattice (S, \leq) is understood a mapping $a \rightarrow a^c$ of S into S such that $a \leq a^c$, $(a^c)^c \leq a^c$, $a \leq b \Rightarrow a^c \leq b^c$.

An element a of S is called *closed* if $a^c = a$.

THEOREM 9. Let L(M) be the complete lattice of all submodules of M. Then the mapping $A \rightarrow P(A)$ is a closure operation on L(M).

Proof. Let $A \subseteq L(M)$, then there exists a unique prime cover P(A) of A. Hence $A \subseteq P(A)$ and P(A) = P(P(A)). If $A \subseteq B$, then $P(A) \subseteq P(B)$. Thus $A \rightarrow P(A)$ is a closure operation on L(M).

If A and B are submodules of the prime near-ring module M such that $A \cap B = (0)$. Let

 $S=\{B'|B' \text{ is a submodule of } M \text{ such that } A\cap B'=(0) \text{ and } B'\supseteq B\}.$ Then $S\neq \phi$, for $B\subseteq S$, and (S,\subseteq) is an ordered set. Hence Zorn's lemma allows us to find a maximal element B'' in S. Such a submodule as B'' is called a *complement of* A (over B). Any left ideal L of N for which $L\cap L_1=(0)$ has a complement $L'(\supseteq L_1)$ as a consequence.

THEOREM 10. Let A be a submodule of the prime distributive near-ring module M and A' be a complement of A. Then A' is a prime submodule of M.

Proof. Suppose that $LA_1 \subseteq A'$, A_1 a N-subgroup of M and L a nonzero left ideal of N. Then $L[(A_1+A'|\cap A]\subseteq A'\cap A=(0)$, and since M is prime, $(A_1+A'|\cap A=(0))$. Now A' is a complement of A, and therefore $(A_1+A'|\subseteq A')$ Thus $A_1\subseteq A'$ and A' is a prime submodule of M.

DEFINITION 11. Let M be a N-module and let M_1 , M_2 be subsets of M. Then $(M_1:M_2)=\{n\in N|nM_2\subseteq M_1\}$, we denote $(\{m\}:M_2)=(m:M_2)$ for $m\in M$, similarly for $(M_1:\{m\})=(M_1:m)$. Moreover $(0:M_2)$ is called the *left annihilator* of M_2 .

LEMMA 12. Let A be a submodule of NM and A_1 be a subset of M. Then $(A:A_1)$ is a left ideal of N and $(A:A_1) = \bigcap_{x \in A_1} (A:x)$. In particular, (0:m) is a left ideal of N.

Proof. See [6, p. 21].

THEOREM 13. Let A be a prime submodule of the prime near-ring module $_{N}M$ and let A_{1} be a subset of M. Then $(A:A_{1})$ is a prime left ideal of N.

Proof. Let $x \in A_1$ and let $L_1L_2 \subseteq (A:x)$ for L_1 a nonzero left ideal of N, L_2 a N-subgroup of N. Then $(L_1L_2)x=L_1(L_2x)\subseteq A$. Since A is a prime submodule of M, $L_2x\subseteq A$. Hence $L_2\subseteq (A:x)$. Therefore (A:x) is a prime left ideal of N. Since $(A:A_1)=\bigcap_{x\in A_1}(A:x)$, $(A:A_1)$ is a prime left ideal of N.

COROLLARY 14. Let NM be a prime near-ring module and $x \in M$. Then the left annihilator (O:x) is a prime left ideal of N.

THEOREM 15. For any x in the prime near-ring module $_{N}M$ and left ideal L of N, $P(L)x \subseteq P((Lx|)$.

Proof. Since $Lx\subseteq (Lx|\subseteq P(Lx|), L\subseteq (P((Lx|):x))$. Since (P((Lx|):x)) is prime left ideal of N, $P(L)\subseteq P((Lx|):x)$. Hence $P(L)x\subseteq P((Lx|))$.

Hereafter N is a distributive near-ring. Let L be a left ideal of a distributive near-ring N and let $L^r = \{n \in N | Ln = 0\}$ be the right annihilator of L. Then L^r is a right ideal of N. For if $n \in L^r$, $x \in N$, $l \in L$, then l(x+n-x)=lx+ln-lx=0. So L(x+n-x)=0. Thus L^r is normal and (Ln)N=L(nN)=0. Hence L^r is a right ideal of N.

Let I be a right ideal of N and let $I^{l} = \{n \in N \mid nI = 0\}$ be the left annihilator of I. Then I^{l} is a left ideal of N. In particular, if N is strictly prime, then I^{l} is a prime left ideal of N.

LEMMA 16. Let I and I' be right ideals of N and let L and L' be left ideals of N. Then

- (1) $I \subseteq I^{lr}$ and $L \subseteq L^{rl}$
- (2) If $I'\subseteq I$, then $I^{l}\subseteq I'^{l}$
- (2') If $L'\subseteq L$, then $L^{r}\subseteq L'^{r}$
- (3) $I^{trl}=I^{t}$ and $L^{rlr}=L^{r}$

Proof. (1) Since $I^{l}I=0$, $I\subseteq I^{lr}$. Similarly for $L\subseteq L^{rl}$.

(2) It is obvious.

(3) By (1), $I^l \subseteq I^{lrl}$ and, by (2), $I^{lrl} \subseteq I^l$. Thus $I^l = I^{lrl}$.

For any left ideal L and right ideal I of N, let us define $l(L)=L^{rl}$ and $r(I)=I^{lr}$. Denote by \mathcal{U}_l the set of all left ideals L such that L=l(L), and \mathcal{U}_r the set of all right ideals I such that I=r(I).

THEOREM 17. The mapping $L \mapsto l(L)$ is a closure operation on the complete lattice of all left ideals of N.

Proof. It is immediate from Lemma 16.

THEOREM 18. The lattices \mathcal{U}_r and \mathcal{U}_l are anti-isomorphic under the correspondence $I \mapsto I^l$, $I \in \mathcal{U}_r$.

Proof. Let I, $I' \in \mathcal{U}_r$, then $I \subseteq I + I'$ and $I' \subseteq I + I'$. Thus $(I + I')^l \subseteq I^l \cap I'^l$. Now let $x \in I^l \cap I'^l$, then xI = 0 and xI' = 0. Hence x(I + I') = xI + xI' = 0 and $x \in (I + I')^l$. Therefore $(I + I')^l = I^l \cap I'^l$. Thus $I \cap I' = I^l \cap I'^{lr} = (I^l + I'^l)^r \in \mathcal{U}_r$. Define $I \cup I' = r(I + I')$ in \mathcal{U}_r . It is clear that \mathcal{U}_r and \mathcal{U}_l are lattices.

Define $f: \mathcal{U}_r \rightarrow \mathcal{U}_l$ by $I \mapsto I^l$.

It is clear that f is bijective, and that $f(I' \cup I) = (I'+I)^l = I'^l \cap I^l = f(I') \cap f(I)$, $f(I' \cap I) = f(I'^{lr} \cap I^{lr}) = f((I'^l + I^l)^r) = (I'^l + I^l)^{rl} = I'^l \cup I^l = f(I') \cup f(I)$. Thus f is a lattice anti-isomorphism.

THEOREM 19. Let N be a near-ring and let L be a nonzero left ideal of N such that left $ann(L) = \{n \in N | nL = 0\} = (0)$. Then N is commutative if L is.

Proof. Assume that L is commutative. Let $n \in \mathbb{N}$, $x \in L$ be given. Then for any $y \in L$,

$$(nx-xn)y = (nx+(-(xn))y = (nx)y+((-x)n)y = n(xy)+(-x)(ny) = (ny)x+(-x)(ny) = x(ny)+(-x)(ny) = (x+(-x))ny=0.$$

Since $y \in L$ is arbitrary, nx-xn left ann (L)=(0). Hence nx=xn. Thus L is contained in the center of N. Next suppose that n, $s \in N$ and let $x \in L$. Then (ns-sn)x=n(sx)-s(nx)=(sx)n-s(xn)=0, for $sx \in L$. Hence ns-sn left ann (L)=(0), n and s being arbitrary. So the proof is complete.

LEMMA 20. Let N be a distributive near-ring. Then N is either each

element is a zero-divisor or N is a ring.

Proof. It is a result of Taussky. See [6], p. 332.

THEOREM 21. Let N be a near-ring without zero-divisor. Suppose N has a nonzero commutative left ideal L. Then N is a commutative ring.

Proof. It follows from Theorem 19 and Lemma 20.

References

- 1. Andries, P.J., Fully generating subsets of near-rings, Proc. of Conference on near-rings and near-fields, san Benedetto del Tronto, (1981), 123-130.
- 2. R.E. Johnson, Prime rings, Duke Math. J., 18:799-809, 1951.
- 3. Kaplansky, I., Fields and rings, Univ. of Chicago Press, Chicago, (1969), 32-54.
- Lambek, J., Lectures on rings and modules, Blaisdell, Waltham, Mass., (1976), 1-26.
- 5. McCoy, Neal H., Prime ideals in general rings, Amer. J. of Math. 71, 823-833, 1949.
- 6. Pilz, G., Near-rings, North Holland, New York, (1977).
- 7. Roth, R.J., The structure of near-rings and near-ring modules, Doctoral dissertation, Duke University, 1962, 5.

Yeungnam University Gyongsan 713-800, Korea