REMARKS ON BCI-ALGEBRAS

Young BAE JUN

In 1966, K. Iseki [2] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. In this paper we prove that $HOM_*(X, Y)$ is an associative BCI-algebra in which every element is of order two. Also we introduce the notion of an exact sequence of homomorphisms of BCI-algebras, and give some related results.

Definition 1. [2] A BCI-algebra is an algebra (X, *, 0) of type (2, 0) with the following conditions:

$$(] (x*y)*(x*z) \le z*y,$$

(N)
$$x \le y$$
 and $y \le x$ imply $x = y$,

(
$$V$$
) $x \le 0$ implies $x = 0$,

where $x \le y$ if and only if x * y = 0.

It is proved by Iseki [4] that in any BCI-algebra X we have

$$(x*y)*z=(x*z)*y \text{ and } x*0=x$$

for all x, y and z in X.

Definition 2. [5] A mapping $f: X \rightarrow Y$ between BCI-algebras X and Y is called a homomorphism if

$$f(x*y) = f(x)*f(y)$$

for all x, $y \in X$.

LEMMA 3. Let X, Y and Z be BCI-algebras, and let $h: X \rightarrow Y$ be an epimorphism, and let $g: X \rightarrow Z$ be a homomorphism. If $Ker(h) \subset Ker(g)$,

Received April 8, 1988.

then there is a unique homomorphism $f: Y \rightarrow Z$ satisfying fh=g.

Proof. The proof is quite similar to the case of a BCK-algebra (see [3], p. 22).

LEMMA 4. Let X, Y and Z be BCI-algebras, and let $g: X \rightarrow Z$ be a homomorphism, and let $h: Y \rightarrow Z$ be a monomorphism with $Im(g) \subset Im(h)$. Then there is a unique homomorphism $f: X \rightarrow Y$ satisfying g = hf.

Proof. For each $x \in X$, $g(x) \in \text{Im}(g) \subset \text{Im}(h)$. Since h is a monomorphism, there exists a unique $y \in Y$ such that h(y) = g(x). Therefore there is a function $f: X \to Y$, $x \mapsto y$, such that hf = g. To show that f is a homomorphism, let $x_1, x_2 \in X$, then

$$g(x_1*x_2)=h(f(x_1*x_2)).$$

On the other hand, since g is a homomorphism,

$$g(x_1*x_2) = g(x_1)*g(x_2)$$

= $h(f(x_1))*h(f(x_2))$
= $h(f(x_1)*f(x_2)).$

Hence $h(f(x_1*x_2)) = h(f(x_1)*f(x_2))$. Since h is a monomorphism, $f(x_1*x_2) = f(x_1)*f(x_2)$. The uniqueness of f is trivial since h is a monomorphism.

Definition 5. A sequence of homomorphisms of BCI-algebras

$$X \xrightarrow{f} g$$

 $X \xrightarrow{g} Y \xrightarrow{g} Z$

is called a zero (resp. an exact) sequence if gf=0 (resp. Im(f)=Ker(g)).

THEOREM 6. Let $X \rightarrow Y \rightarrow Z \rightarrow 0$ be an exact sequence of homomorphisms of BCI-algebras, and let $h: Y \rightarrow A$ be a homomorphism of BCI-algebras such that hf=0. Then there is a unique homomorphism $\phi: Z \rightarrow A$ satisfying $\phi g = h$.

Proof. Since hf=0, we have $Ker(g)=Im(f) \subset Ker(h)$. It follows from the Lemma 3 that there is a unique homomorphism $\phi: Z \rightarrow A$ satisfying $\phi g = h$.

THEOREM 7. Let $0 \rightarrow X \rightarrow Y \rightarrow Z$ be an exact sequence of homomorphisms

of BCI-algebras, and let $h: A \rightarrow Y$ be a homomorphism of BCI-algebras such that gh=0. Then there is a unique homomorphism $\psi: A \rightarrow X$ satisfying $f\psi=h$.

Proof. Since gh=0, we have $\text{Im}(h)\subset \text{Ker}(g)=\text{Im}(f)$. It follows from the Lemma 4 that there is a unique homomorphism $\psi:A\to X$ satisfying $f\psi=h$.

Definition 8. [5] A BCI-algebra X is said to be associative if (x*y)*z = x*(y*z) for all x, y and z in X.

Example. Let X be a trivial BCK-algebra, and let a be an ideal element. We define

$$0*a=a*0=a,$$

 $a*a=0.$

Then $X \cup \{a\}$ is a BCI-algebra, but not a BCK-algebra. Moreover, $X \cup \{a\}$ is an associative BCI-algebra.

Let X and Y be BCI-algebras and let $\operatorname{Hom}_*(X, Y)$ denote the set of all homomorphisms with an associative BCI-algebra as codomain. Let $f, g \in \operatorname{Hom}_*(X, Y)$. Define a mapping $f * g : X \to Y$ by

$$(f*g)(x) = f(x)*g(x)$$

for all $x \in X$. Then we have the following:

THEOREM 9. Let X and Y be BCI-algebras and $f, g \in Hom_*(X, Y)$. Then $f*g \in Hom_*(X, Y)$.

Proof. For any $x, y \in X$,

$$(f*g)(x*y) = f(x*y)*g(x*y)$$

$$= (f(x)*f(y))*(g(x)*g(y))$$

$$= (f(x)*(g(x)*g(y)))*f(y)$$

$$= ((f(x)*g(x))*g(y))*f(y)$$

$$= ((f(x)*g(x))*f(y))*g(y)$$

$$= (f(x)*g(x))*(f(y)*g(y))$$

$$= (f*g)(x)*(f*g)(y).$$

This implies $f*g \in Hom_*(X, Y)$.

For any $f, g, h \in \text{Hom}_*(X, Y)$ and $x \in X$, we have

$$\begin{aligned} ((f*g)*h)(x) &= (f*g)(x)*h(x) \\ &= (f(x)*g(x))*h(x) \\ &= f(x)*(g(x)*h(x)) \\ &= f(x)*(g*h)(x) \\ &= (f*(g*h))(x), \end{aligned}$$

and

$$(f*f)(x)=f(x)*f(x)=0.$$

It follows that (f*g)*h=f*(g*h) and f*f=0, the zero homomorphism. Hence we have the following:

THEOREM 10. Let X, Y be BCI-algebras. Then $\operatorname{Hom}_*(X, Y)$ with the composition * and the constant 0 given by $0: x \mapsto 0$ is an associative BCI-algebra in which every element is of order two.

The following is easily verified:

THEOREM 11. For $f, f' \in Hom_*(X, Y)$ and $g, g' \in Hom_*(Y, Z)$, the following distributive laws hold:

(1)
$$g(f*f') = (gf)*(gf')$$
.
(2) $(g*g')f = (gf)*(g'f)$.

Let X, Y and Z be BCI-algebras. For a fixed element f in $\text{Hom}_*(X, Y)$, we define maps

$$f_*: \operatorname{Hom}_*(Z, X) \to \operatorname{Hom}_*(Z, Y)$$

and

$$f^*: \operatorname{Hom}_*(Y, Z) \to \operatorname{Hom}_*(X, Z)$$

by

$$f_*(\phi) = f\phi$$
 and $f^*(\phi) = \phi f$

for all $\phi \in \text{Hom}_*(Z, X)$ and all $\phi \in \text{Hom}_*(Y, Z)$. Clearly f_* and f^* are homomorphisms of BCI-algebras.

LEMMA 12. Let $X \rightarrow Y \rightarrow Z$ be a zero sequence of homomorphisms of BCI-algebras.

(1) Assume that for every homomorphism $u: M \rightarrow Y$ of BCI-algebras with gu=0 there is exactly one homomorphism $v: M \rightarrow X$ of BCI-algebras with u=fv. Then the sequence

$$f_*$$
 $Hom_*(M, X) \xrightarrow{f_*} Hom_*(M, Y) \xrightarrow{g_*} Hom_*(M, Z)$

is exact.

(2) Assume that for every homomorphism $u: Y \rightarrow N$ of BCI-algebras with uf=0 there is exactly one homomorphism $v: Z \rightarrow N$ of BCI-algebras with u=vg. Then the sequence

$$Hom_*(Z, N) \xrightarrow{g^*} Hom_*(Y, N) \xrightarrow{f^*} Hom_*(X, N)$$

is exact.

- *Proof.* (1) Since gf=0, we have $g_*f_*(v)=gfv=0$. It follows that $\text{Im}(f_*)\subset \text{Ker}(g_*)$. Let $u\subset \text{Ker}(g_*)$. Then $g_*(u)=gu=0$, and hence by the assumption there exists a homomorphism $v:M\to X$ such that u=fv. This means that $f_*(v)=u$. Hence $u\subset \text{Im}(f_*)$. Thus we have $\text{Im}(f_*)=\text{Ker}(g_*)$.
- (2) Since gf=0, we have f*g*(v)=f*(vg)=v(gf)=0. This shows $Im(g*) \subset Ker(f*)$. Let $u \in Ker(f*)$. Then f*(u)=uf=0. By the assumption, there exists a homomorphism $v: Z \to N$ satisfying u=vg. It follows that u=g*(v). Hence $u \in Im(g*)$, which completes the proof.

THEOREM 13.

(1) Let $0 \rightarrow X \rightarrow Y \rightarrow Z$ be an exact sequence of homomorphisms of BCI-algebras. For every BCI-algebra M, the sequence

$$0 \rightarrow Hom_*(M, X) \xrightarrow{f_*} Hom_*(M, Y) \xrightarrow{g_*} Hom_*(M, Z)$$

is exact.

(2) Let $X \rightarrow Y \rightarrow Z \rightarrow 0$ be an exact sequence of homomorphisms of BCI-algebras. For every BCI-algebra N the sequence

$$0 \rightarrow Hom_*(Z, N) \xrightarrow{g^*} Hom_*(Y, N) \xrightarrow{f^*} Hom_*(X, N)$$

is exact.

Proof. (1) By Theorem 7 and Lemma 12, the sequence

$$Hom_*(M, X) \xrightarrow{f_*} Hom_*(M, Y) \xrightarrow{g_*} Hom_*(M, Z)$$

is exact. Next we show that the sequence

$$0 \rightarrow Hom_*(M, X) \xrightarrow{f_*} Hom_*(M, Y)$$

is exact. Let $v \in \text{Ker}(f_*)$. Then fv = 0. Since f is injective, we have v = 0. It follows that the sequence is exact.

(2) By Theorem 6 and Lemma 12, the sequence

$$\operatorname{Hom}_*(Z,N) \xrightarrow{g^*} \operatorname{Hom}_*(Y,N) \xrightarrow{f^*} \operatorname{Hom}_*(X,N)$$

is exact. Next we show that the sequence

$$0 \rightarrow \operatorname{Hom}_*(Z, N) \xrightarrow{g^*} \operatorname{Hom}_*(Y, N)$$

is exact. Let $w \in \text{Ker}(g^*)$. Then wg = 0, and hence w = 0 by the surjectivity of g. It follows that the sequence is exact.

References

- 1. C.S. Hoo and P.V.R. Murty, A note on associative BCI-algebras, Math. Japonica 32(1987), 53-55.
- 2. K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad. 42(1966), 26-29.
- 3. K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23(1978), 1-26.
- 4. K. Iseki, On BCI-algebras, Math. Seminar Notes 8(1980), 125-130.
- K. Iseki and A.B. Thaheem, Note on BCI-algebras, Math. Japonica 29(1984), 255-258.

Gyeongsang National University Jinju 660-701, Korea