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NONLINEAB HA.IUlONIC ANALYSIS

Classical harmonic analysis concerns the study of harmonic functions
-on a domain. Especially, the boundary behavior of harmonic functions
is one of the central issues of harmonic analysis because of its direct
relationship with Fourier series. Harmonic analysis has a long and rich
history, and it by now possesses a well defined body of knowledge.
(See, for example, [SW].) However, the whole theory is distinctively
linear, and it was not clear how to extend this linear theory to nonlinear
situation. Recently, however, P. Aviles, M. Micallef, and the author
have succeeded in extending the harmonic analysis results to harmonic
maps, which is a natural nonlinear generalization of harmonic function
[ACM]. Harmonic map arises naturally from differential geometry and
physics (oo-model, liquid crystal, etc~), and haS been the object of much
interest from differential geometry, nonlinear elliptic partial differential
-equation. and physics. In this paper. we will first describe the recent
development from the perspective of harmonic analysis, and then show
how our results extend naturally to most general situation. The author
would like to thank professor Dong Pyo Chi for his interest in our work.

§1. Harmonie Map

Let M and N be Riemannian manifolds of dimension m and n respec­
tively. Let Xl, r, ...• :r:'" be local co-ordinates of M, and yI,::I, ..., ye those
(If N. Let g=g"tlixlltdxP and k=~jdyidyi be the metrics of M and N,
respectively. The repeated indices are sunnned. Greek indices range from
1 to m. and Latin 1 to n. Let u: M-n be a map. In terms of local
co-ordinates, yI,::I, "', ye, u is represented by an n-tuple of functions

(uI , ••• , u"). We define the energy density e(u) =trg(u*k) =glltPkiJ aOui
x"
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~:: . Harmonic map is a critical point of the functional fMe(u)dv. In.

terms of local co-ordinates, harmonic map satisfies the following nonlinear­
elliptic system of PDE.

Jui+r·,/(u)g"1l QUi ~=O for i=l, 2, "', n,
1 ox" oxll '

where r ik
i is the Christoffel symbol of N.

If N is flat, all Christoffel symbols vanish, and the harmonic map­
equation becomes the Laplace-Beltrami equation. In other words, harmonic
map is a nonlinear generalization of harmonic function, and the nonli­
nearity is due to the presence of curvature in the target manifold N.

It is well known from the linear theroy that harmonic function is
smooth in the interior of the domain of definition. However, harmonic
map, in general, has singularity, (See [SUJ for singularity estimates for­
energy minimizing harmonic maps.) It is therefore clear that the existence
of singularity must be due to nonlinearity. In fact, there has been much.
activity to try to understand the size and structure of singularity. The
nonlinearity of harmonic map is at the lower order term, and the leading
second order part is linear, which makes the nonlinearity rather mild,
and in fact it was suspected that the nonlinear terms should play relatively
minor role, if the harmonic m~p is smooth. We can therefore ask the
following general question: How close is harmonic map to harmonic
function when it is smooth? We found the answer in the affirmative in
the sense given below. For the c1earity of presentation, we assume, in
§2 and §3, that M is a bounded domain in Rm (m>3) with flat metric.
However, it is easy to see that the results hold for general Riemannian
manifold with minor modification, and for m=2.

§2. Wiener Criterion and Dirichlet Problem on Nonsmooth Domain

The solution of Dirichlet problem for harmonic function is one of the
fundamental results in classical harmonic analysis.

A very flexible method was developed by Perron, and N. Wiener
obtained the necessary and sufficient condition for the solution to take
on the given boundary value [WJ.

DEFINITION. Let {} be a bounded domain in Bm. A point pEo{} is
called a regular point (for Dirichlet problem), if, for any continuous
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boundary data t/J : aQ---+R, there eXists h : Q---+R such that dh=O on Q
.and h (:.c) ---+t/J (P) as x---+P.

DEFINITION. Let K be a compact subset in B"', the capacity cap(K)
()f K is defined by

cap(K)=inf{f IrfI 2dvlfECol(R"') and f 1 on X}
s-nK

WIENER CONDITION. Let [,J be a bounded domain in B .... Let pEaQ.
Let q be a real number such that O<q<l, and j a positive integer.
Define :.c(qj)=a(2-..)jcap{B~;(p)\B~J+l(P)\[,J}. p is called a Wiener point,

if r;X(aj
) diverges for some aE(O, 1).

j=l

THEOREM(Wiener Criterion). PEaQ is regular if and only if P is a
Wiener point.

This theorem reduces the test for regularity to a computable (at least
in principle) formula. The Dirichlet problem for harmonic map Wll.S first
solved by R. Hamilton [H] when the target manifold has nonpositive
-curvature, and by S. Hildebrandt, H. Kaul, and K. -0. Widman [HKW]
when the target manifold has positive curvature. In either case the
,solution is obtained for the harmonic map lying in the geodesic ball
BR(q) such that R is bounded if N is a simply connected complete
manifold of nonpositive curvature, and if N has positive curvature,

R<min{ 2 :1 ' i(P)} where i(p) is the injectivity radius at P, and

k the upper bound of sectional curvature of N. For convenience, let us
call the above condition HKW condition. It is perhaps relevant to make
note that when N has positive curvature, the above assumption is optimal

in the sense that if R>min { 2; k ' i (p) } , the solution may have

singularity. As we mentioned in §1, we want to restrict ourselves to
the situation when the solution is guaranteed to be smooth. The results
()f Hamilton and Hildebrandt-Kaul-Widman are PDE results, and because
the proof involves boundary estimates, boundary must be assumed to
have certain regularity, say Cl,,,, and the boundary data must be C".
In [ACMJ, a method to avoid the boundary estimates altogether was
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developed, and as a consequence, the following result, which is as sharp­
as the harmonic analysis result of Wiener, is obtained.

THEOREM. Let OcR- be a nonsmooth bounded domain. Suppose ep : aft
-BR(q) be a continuous map. Assume BR(q) satisfies the HKW condition.
Then there exists a harmonic map u : O-BR(q) such that u(x)-ep(p) as
x-p for e:oery Wiener point pEaO.

Sketch of Proof. ep= (epl, ep2, "', ep1l) is an n-tuple of functions. Let h=
(hI, h2, "', h1l) be the harmonic extension of ep such that hi is the solution
of the Dirichlet problem for the boundary data ifJ. Let {O;} be a family'
of smooth subdomains of 0 such that UOi=D and DiCCO. Since Di

i

is smooth, one can obtain the harmonic map Ui: Di-BR(q) such that
ui=h on oDi. We need to estimate the distance between Ui and h in the:
Co sense. Let p (y, z) be the geodesic distance in N between two points.
y and z of N. Define

ifJ(x) = cos( ..j7i:P(Ui(X), q»

A lengthy computation shows that JljJ>-Cll7hI 2=- ~ IJhl 2, where C

is a constant depending only on the geometry of D and BR (q), and.

{
l (l-cos( ..jkp(y, z») if k>O,

A(y, z)=
~ p2(y, z) if k=O.

We define a function ljJ(x) on {J by

A (Ui (x), hex»~

11 "Il7hI 2=:Ell7hi I2, and IhI2=:Elhi I2. Let Vi be a harmonic function on.
i=l i=l

Di such that Vi=ljJ+ ~ Ihl 2 on OOi. By maximum principle, we have:

ljJ+ ~ IhI 2<vi. Thus ljJ<Vi- ~2IhI2. Since ljJ=O on aDi, Vi- ~ IhI 2=()

on afJ;. Therefore we have the following Co estimate

where Cl is a universal constant.
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By the gradient estimate of the author [Cl], the sequence {Ui} has a
subsequence converging to a harmonic map u, and {Vi} also has a
subsequence converging to a harmonic function v. Therefore we have

p2(U(X), h(x)<C1«v(x)- ~lh(X) 1
2

) for all xED.

Since V and ~ Ih 1
2 have the same boundary value at every Wiener

point, u must have the same boundary value as h has at p, which is
rp(p).

REMARK. One can modify the above statement and proof to allow rp
to be measurable, which is of interest in itself.

§3. Fatou' 8 Theorem

Another interesting result from harmonic analysis is Fatou's theorem
which states as follows: Let D be the open unit disk in C, and let h
be a positive harmonic function on D. Then lim h (rei') = rp (0) exists for

r-1

almost all O. One can actually allow the limit to be nontangential limit.
The significance of Fatou's theorem is the following: By the Poisson
formula,

hex) = f K(x, O)dp.(O) ,
5'

where dp. is a measure representing the "boundary value" of h. With
respect to Lebesgue measure dO of the boundary, dp. can be written as
dp.=dp.a.c. +dP.sing, where dp.a.c. is the absolutely continuous part of dp.

w.r.t. dO, and dP.sing the singular part. Let d':it be the Radon-Nikodym

derivative of dp.a.c. with respect to dO, Then rp= d':it . In other

words, the nontangential limit recovers the absolutely continuous part of
dp.. If, in addition, h is bounded, then dp.sing=O. Therefore the non­
tangential limit completely recovers the bounded harmonic function h.
and in terms of the Poisson formula

hex) = f K(x, 0) rp (O)dfJ.
5'
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The situation for solutions of nonlinear elliptic equation is quite
different, and in general Fatou-type results do not hold. However, our
Co estimate is a rather powerful tool to control the boundary behavior,
and in fact we obtain the following Fatou-type theorem.

THEOREM. Let OcR'" be a bounded Lipschitz domain. Suppose u : o~
BR(q) is a harmonic map defined in the interior of n, and BR(q) is
assumed to satisfy HKW condition. Then the nontangential limit exists
for almost all QEaO.

Sketch of Proof. Let {nil be subdomains as in the proof of Theorem
in §2. Let hi= (h/, hi2, "', hi") be an n-tuple of harmonic functions such
that hi=u on aDi. Apply the argument for C°-estimate to obtain p2(U, hi)

<Cl (Vi- ~ Ihi 12
). By the standard gradient estimate, rh;} has a con­

vergent subsequence. Therefore, we have p2(U, k) <Cl (V- ~ Ik 12
). A

subtle argument then shows that v - ~ 1k 1
2 achieves zero boundary

value almost everywhere on an. One can then apply usual Fatou's
theorem for harmonic functions, which says that h has nontangential
limit rp almost everywhere on ao. Combining these two statements, the
proof is complete.

REMARK (Recovering u from rp). One can in fact recover u from rp.
Let rp be the nontangential limit obtained by the above theorem. Let
h= (hI, h2

, "', h") be the n-tuple of harmonic functions with "boundary
value" rp. Let {Di } be the subdo:mains as before, and let Ui: Oi~BR(q)

be a harmonic map such that ui=h on aDi. Then by the argument
similar to the one given above, {Ui} has a subsequence convergent to a
harmonic map with "boundary value" rp. By the maximum principle,
this new harmonic map must be the original u.

§4. Nonlinear Harmonic Analysis on Complete Manifold

Let M be a complete, simply connected Riemannian manifold with
sectional curvature KM satisfying -b2<KM<-a2<O. Two unit speed
geodesics Tt and 72 are called asymptotic, if liro d(n (t), T2(t»<C for,-..
some constant C. The set of equivalence classes of asymptotic geodesics
is called the sphere at infinity, and is denote by S(oo). Intuitively,
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5(00) is analogous to the extrinsic boundary {xl Ixl =l} when M is
the unit ball {x I Ix I<I} with the Poincare metric. We can therefore
~ the Dirichlet problem for harmonic function on M with 8(00) as
the boundary. The author first studied this problem and obtained a
sufficient condition for the solvability of Dirichlet problem in terms of
certain convexity condition at infinity [C2]. This condition was later
verified by M. Anderson under the current curvature assumption [A].
Later, M. Anderson and R. Schoen produced many interesting harmonic
analysis results on M. Among other things, they identified the Martin
boundary, and wrote down the Poisson formula, and proved the Fatou's
theorem.

In this context, our previous results from §2 and §3 are still valid,
although some nontrivial work is needed.

THEOREM. Let p: S(oo)-BR(q) be a continuous map. Then there
exists a harmonic map u : M-BR(q) such that UIScool=P.

THEOREM. Let u : M-BR(q) be any harmonic map. Then the nontan­
gential limit exists for almost all QES(oo).

Furthermore, if ep is Ca, one can obtain much detailed information
on u.

THEOREM. Let ep : S(ex»-BR(q) be a Ca map. Then there exists a
harmonic map u: M-BR(q) such that p(u(x), ep(x))<Ce-~r(X), and
e(u) (x) <Ce-~r(xl, where C and (5 are constants depending only on a and
the geomerty of M and BR(q). r(x) denotes the geodesic distance from
a fixed point OEM.

The proof of the above Theorem utilizes the Leray-Schauder degree
theory together with many potential theoretic estimates.

§5. Martin Boundary

Our results above rely heavily on the special properties of harmonic
functions, and our CO estimate technique is the key link from harmonic
functions to harmonic maps. Therefore, it is natural to ask what kind
of potential theoretic results have corresponding counterpart in harmonic
maps. In this section we briefly illustrate how the Dirichlet problem can
be posed and solved on the so-called Martin boundary. Let Q be a
complete Riemannian manifold (with or without boundary) which supports
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a nonconstant positive superharmonic function. For convenience, we
denote the interior by f). Let G(x, y) be Green's function which vanishes
on of) and at infinily. Let 0 be a fixed point. Martin function hy(x)

with pole at y is defined to be hy(x) =h(y, x) = gg: :? Let {y;} be

a sequence of points in 0 which has no limit point in the interior of
0. The corresponding sequence {hy .} of Martin functions is called
fundamental, if hy , converge to a harmonic function, say hy. Two
fundamental sequences {Yi} and {Zi} are equivalent if the limiting
harmonic functions hy and hz coincide. The set of all equivalence classes
of fundamental sequences is called the Martin boundary of 0, which is
denoted by fIlO. Or, equivalently, the set of such limiting harmonic
functions can be identified with the Martin boundary. Topologized in an
obvious way [M], Q=OMOUO is a compact metric space, and 0 is dense
in Q. A positive harmonic function h is called minimal, if f is another
positive harmonic functions such that O<f<h, then f=ch for some
suitable constant c. We define the minimal Martin boundary OlMO=
{hyEfIlOjhy is minimal}. In [M], Martin proved that for every positive
harmonic function h there exists a measure dp concentrated on dlM{J
such that

where K(x,';) is the Martin function at ';EdlMO. Later Brelot showed
that the Dirichlet problem can be solved on Martin boundary from a
general point of view [B]. It is therefore easy to reformulate our
previous results on Dirichlet problem for harmonic maps in this context.

Finally, we would like to mention possible future development from
this point of 'View: There are many other interesting results from
harmonic analysis, and it is very interesting to study to what extent
the results from the linear theory carry over to nonlinear situation.
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