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SOME PROPERTIES OF THE FEYNMAN INTEGRAL

Kun Six Ryu

1. Priliminaries and Notations

In 1976, Cameron and Storvick introduced an operator-valued Yeh-
Wiener integral[2]. Using the Neumann series, they calculated an
operator-valued Yeh-Wiener integral for some functionals and they found
that this integral is a solution of a Wiener integral equation. In this
paper, we will calculate an operator-valued Yeh-Wiener integral for a
larger class of functionals which contains the functionals in [2]. The
method we use here is quite different from the method used in [2].
Moreover, we find that it satisfies the Wiener integral equation [2],

Let R={(s,t)|a<s<t, a=<t<p} and let Ci[a, fl={»(-)|y is con-
tinuous on [a, 8] and p(a)=0}. Let C,[R]={z(+, )|z is continuous
on R and z(a, +)=z(-,a)=0} and let C*[R]={x(-, )|z is continuous
on R and z(-,a)=0}. Let m; be the complete Wiener measure on
Ci[a, 8] and let m, be the complete Yeh-Wiener measure on C,[R] [see
6]. For p>0 and a scale invariant measurable subset B of C,[e, 8], we
define a measure m,* given by m?(B)=m(p"'B) [see 5]. Let
W(C,[a, B]) be a class of Wiener measurable functionals ¢ defined on
Ci[a, B] such that ¢(yy(-) +7(-)) is Wiener integrable in y over C,[a, §]
for each positive 7 and each » in C[a, f]. The operator-valued Yeh-
Wiener integral I, ,(F)=IL(F) is defined so as to take a functional ¢
into the functional I,(F)¢ whose value at 5 is

L@ = [ FG 2%, ) +9()
X2 (B, ) +7(-))dm, ().

Here the independent variables for 7 is the second independent variables
for £ and F is a functional on C,*[R],
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Throughout this paper, let # be a Lebesgue X Wiener measurable
functional defined on [a, 8] XCi[a, ] such that 6 is defined on every-
where and

Bllas= [ 160G, Yl dma(5) <00

where m; is the Lebesgue measure on [a,5] and |6(s, *)|l,_.=sup{M]
the set of 5 in C,[a, ] with |0(s,n)|>M is a s-null set} [see 5]. And
let F be a functional on C,*[R] given by

Fa,-N=[ 0620 ))dms.
ta, b3
We finish this section with the following lemma.

LeMMA. Under the above assumptions, for 2>0, F(171/2x(e, ) +75(+))
is difined and satisfies

[FQ22(e, ) +9()) | <l16llws
for myxXmy-a.e. (z,7) in C,[R]XC\[a, 8].

Proof. Let H; : [a, ] X C,[R] X Ci[a, g1—[a, ] XC,;[a, 8] be a function
with H;(s, z, 7) = (s, 7/ 2x(s, -) +75(+)). H; is everywhere defined and
continuous and so #oH is certainly measurable. Let

N={(s, pEla, b1 xCila, g1 16(s, ) [ >116Cs, ).

By the Fubini theorem, N is a null set. And N® is a s-null set for s
in [a, 8] where N is a section of N for s, Also

[H:™ (N) ]
= @EC,[R] |2 (s, ) €L [N® =7(-)]).

By Corollary 15 in [5, p.164], N —3(+) is m;*-null except of at most
a s-null set of y»’s where p={(s—a)/2}7/2 Then IV [N®—3(-)]
is a m%-null set except of at most a s-null set of »’s where g= {(s—
a)/2}71/2, From Theorem 1 in [1, p.20], [H,"'(N)]*? is a m,-null
set except of at most a s-null set of 7’s. Hence, by the Fubini theorem,
H,7Y(N) is myXmyX my—null. Therefore, for m,xm;-a.e. (z,7) and for
my-a.e. s,
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16Cs, 27422 (s, +) +9(+)) [ <UO(s, Mo

Hence, for m,xm;-a.e. (z,7),

[ 166,272 0, ) +2()) ldm ()

[ 106 ) ln dmus)
= ”0”601
<oo,

Thus F(271/22(+, «) +5(-)) is defined and | (3722 (-, ) +29(-)) | =||f]l.-o
for my,xm;-a.e. (z,7) in C,[R]1XC,[a, 8. The proof of this lemma is
complete.

2. An operator-valued Yeh-Wiener integral and a Wiener
integral equation

First of all, we calculate an operator-valued Yeh-Wiener integral for
[F(z(+,+))]" Let
An,a= {(51, S2, 07y 5n) la<51<52<"'<5n<b} and So=a, Ss+1=b.

THEOREM 1. Suppose ¢ is in W(C,[a, B1).
Then for my-a.e. p in Ci[a, 8] and 2>0,

n

=t [, [oe .., 000 T Spmi) 4 g
ntl 74l n1
jzz:lﬁiwi () +7() )djl;llml (wi)dr, I;IlmL(sk)

where pi= (5= 51-1)/2} ™ for j=1,2, -, n+1.

Proof. From Lemma 1, there is a null subset N of C,[R]XC[a, 8]
such that F(1™!/2x (-, +) +%(+)) is defined on N*, By the Fubini theorem,
there is a null subset N, of Cj[a, 8] such that for » in Ny, N is
my-null. Let 5 be given in N;° and >0 be given. Then

[L(F)¢ln(-)
::sz tR3 {f ca,b:ﬂ(s’ 2—1/2‘7:(5’ ')+7)('))dmb(s)}n
XP@71%2(b, «) +7(-))dmy(x)
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®
L] o 0G0 72200 )20

l'l [a,b: k=1

XA o (b, -)+7(-))dma (@)
(2
= f - f (110 (st, 322 (s1, +) +7(-))}

Anye E=L

XG 22 (b, +) +1())dITmy(s2)dma()

3
@, [, 06 ) +2()

Cs LRy k=)

X122 (b, +) +7(: ))dmz(x)dkl;llmn(sk)

@ )
ST O RTOREION

HC, L, 81 lz’“
_ n+1 741
X (2 "‘lei’;wj(' ) +7(+) )d,ljlml (w,-)de_IlmL ().
= - =

Step (1) follows from the Fubini theorem. Since the integrand is
invariant under permutations of s-variables, the integral over the n!
simplexes are equal. Hence we obtain Step (2). Step (3) follows from
the Fubini theorem which will be justified below. Step (4) follows from
the n-parallel lines theorem [1, p.23].

Now,

f s eps FAT2C, ) +0() G226, ) +2()) | dma(2)
[1]
= Mol 160015, ) +9()) 1dma(@)

(2]
= llﬁllo'hfcl ey PATEH(B—a) /21172y () +7(+)) [ dmy ()

[3]

< oo,
Step [1] results from Lemma in section 1. Step [2] results from the
one-line theorem [1, p.21]. From the definition of W(C,[a, g]), we

have Step [3].
This justifies the use of the Fubini theorem in Step (3) above. Thus

the proof of this theorem is complete.
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Applying the dominated convergence theorem, we obtain the following

corollary.
COROLLARY. Let F(z(, ‘))=exp{j - 8(s, 7712z (b, +))dmy.(s)} for x
in C,*[R]. Then for my-a.e. 3 and 2 >0,

LEAO=5], [ (01061 Epm)

ﬂc; 1,83 n—
+2(IE iy (-)+7 ()Tl ()T (5.

This value is denoted by G(a, 7).

THEOREM 2. Under the assumptions in Lemma in section 1 and Theorem
1, G satisfies the Wiener integral equation for a.e.-y;

Glan={, _, o H{G=a)/2) () +1(-))dm w)
] i B G/B () 1))
XG (s, 7712{(b—a) /2} ' *w(-) +9(-))dm, (w)dm.(s)

Jor a.e.-y,

Proof. From the following equahtles, the proof of this theorem is
complete.

J‘c; :u,ﬂ:‘l)(z“l/z {(0—a)/2}' *w(-) +7(-))dm, (w)

[ i Lo 86 TG0 2 () +2(+)
XG(s, 72 {(b—a) /2} 1w () +7(-)) dmy (w)dm.(5)

@) i
= f 6 ca P @2 (6—0) /2 2w (+) +9(-)) dmy (w)

$E[ o $6 T =0) /2 )

e[, [ 0G0

nC, Cayf3 &
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TV ((5—0) /21 () + ()} U ()
FIH (5= a) /2 () +7()) dTTm, (wp) dTTmu(s0)]
X dmy (w)dmy(s)

@) i
- fcl mﬁngb(z 1/2{(6_‘2)/2}“2“)(.) +v('))dm1(w)

w5 J o {06 7 S () +7(-))

II C, fay 83 p_

n+1 rt2 an
% S"(rllzlg?iwi(') 4 ﬂ(-))dg;[lm, (w;)dﬂlmz.(sk)

(3
= Jeem AV 2{(b—a)/2} 2w(+) +9(-))dm, (w)
+20..0 THic, ey (A Gn 725w +2())

X P2 Eap s () + 7)) dTTma ()T ()

)]
= G(a, 7).

From Corollary of Theorem 1, Step (1) holds for a.e.~3 By the
dominated convergence theorem, we obtain Step (2). Let s,=s and §,=

siy for £>2. Then we have Step (3). Step (4) follows from the
denfiition of G,

EXAMPLE, Let & be a measurable function everywhere defined on
[a, b] % [a, 1% Ci[a, B] such that

J o J o 1060 Dl cdmu(dm(5) <oo.
Let F be a functional on C,*[R] given by
Fo)={f [ 0656 )dm@dm).

Suppose ¢ is in W(Ci[a, 8]) such that ¢(z)=¢(x(8)) for some ¢ in
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L.(R). Let 6 be a functional on [, 8]%XC,[a, 8] given by 6(s, )=
J d)(s t,p())dm(t), 0lle;<co. Hence, by Lemma in section 1,
[¢

for 2>0 FQ 12z (s, «)+5(-)) is defined for m,xm;-a.e. (x,7) in
C,[R1xC,[a, 8]. From Theorem 1, [L(F*)¢]lp(-) exists for a.e.-y in

Cila, Bl. Let 4, o= {(s1, 52, =, $a) |@=150<5; <5, ++<5,<8}. By Theorem
1, the Wiener integration formula[6] and the change of parameter, the
following equalites hold for a.e.-y;

LL(F)$1a ()
i DO L G () +7(-))
X PG pi0y(+) 0l () T (o)
T T A e ey

nt1 il atl
X ¢(2~1/2_Z_:1Pi“i.n+1 +7(8)) [kf_]l ir_lk{ZW (EGe—tey)} 12
= =1 j=

xexp{— (u;p—tj,1-1)%/2(ts— ;1) } ]

ntl n+l

thﬂl ﬂmg,(u,,k)dﬂmz,(tk)dﬂmL(SA)

=k

= (1)220+D) (nt2) /2 T - <3
()% fA.,afA.,,f_w f—» {E;I?(SJ., f, jg:lvl"

+260))$ (Gosmn+2N T o™ G (ti—ti) ™7
X exp{—2(v;,s—0j,2-1) %/ 2P/ (ts—t:_1))} ]

n+1 nt

Xdl"[ Hmz,(‘v,,k)dnmL (tk)dnmL(Sk)
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