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SOME PROPERTIES OF THE FEYNMAN INTEGRAL

KUN SIK Rvu

1. Priliminaries and Notations

In 1976, Cameron and Storvick introduced an operator-valued. Yeh­
Wiener integral[2J. Using the Neumann series, they calculated an
operator-valued Yeh-Wiener integral for some functionals and they found
that this integral is a solution of a Wiener integral equation. In this
paper, we will calculate an operator-valued Yeh-Wiener integral for a
larger class of functionals which contains the functionals in [2]. The
method we use here is quite different from the method used in [2J.
Moreover, we find that it satisfies the Wiener integral equation [2J.

Let R={(s,t)la~s~t, a~t~f3} and let CI [a,f3J=(1)(')!7) is con­
tinuous on [a, f3J and 7) (a) =o}. Let C2 [RJ = {x(·, •) Ix is continuous
on Rand x(a, .) =x(·, a) =o} and let C*[RJ = {x(·, .) !x is continuous
on Rand x(·, a) =O}. Let ml be the complete Wiener measure on
Cl [a, f3J and let m2 be the complete Yeh-Wiener measure on C2[RJ [see
6J. For P>O and a scale invariant measurable subset B of Cl [a, f3J, we
define a measure mI' given by m/(B)=ml(p-IB) [see 5]. Let
W(CI[a, f3J) be a class of Wiener measurable functionals rjJ defined on
Cl [a, f3J such that rjJ (ry ( •) + 1) (. )) is Wienerintegrable in y over Cl [a, .eJ
for each positive r and each 1) in Cl [a, f3J. The operator-valued Yeh­
Wiener integral IJ,a(F)=I1(F) is defined so as to take a functional rjJ
into the functional IJ(F)rjJ whose value at 1) is

[lJ (F) rjJJ 1) ( .) = J F(r1l2x(·, •) +1)(. ))
C. cRJ

X rjJ(r l / 2x(b, •) +1)(. ) )dm2(X).

Here the independent variables for 1) is the second independent variables
for x and F is a functional on C2*[RJ.
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Throughout this paper, let () be a Lebesgue x Wiener measurable
functional defined on [a, bJ xCl[a,,BJ such that () is defined on every­
where and

where mL is the Lebesgue measure on [a, b] and 1I()(s,' )II,_co=sup{MI
the set of 7) in Cl [a, P] with 10(s,7) I>M is a s-null set} [see S]. And
let F be a functional on C2*[R] given by

F(x(·, .»=/ fJ(s,x(s, .»dmL(s).
(",h

We finish this section with the following lemma.

LEMMA. Under the above assumptions, for ).>0, F(r1l2x(',') +7)('»
is difined and satisfies

for m2 Xmea.e. (x,7) in C2[R] XCl [a, P]'

Proof. Let HA : [a, b] xC2 [R] X Cl [a, pJ-4[a, b] xC1[a, P] be a function
with HA(s, x, 7)= (s, r 1l2x(s, ')+7)('». HA is everywhere defined and
continuous and so ()o H is certainly measurable. Let

N= {Cs, 7)E[a, b] xCt[a, P] IlfJ(s, 7) 1>1I8(s, )II,-co}.

By the Fubini theorem, N is a null set. And NW is a s-null set for s
in [a, b] where N(') is a section of N for s. Also

[H,2-1 (N) J(',1)

= {xEC2[RJ Ix(s, •)Ert/2 [N(') -7)(')]}.

By Corollary IS in [5, p.164J, N(')-7)(') is mtP-null except of at most
a s-null set of 7)'S where p={).(s-a)/2}-1I2. Then r 1l2[N(')-7)(')]
is a mt'-null set except of at most a s-null set of 7)'S where q= {(s­
a)/2}-tl2. From Theorem 1 in [I, p.20], [H.-t(N)](',") is a m2-null
set except of at most a s-null set of 7)'s. Hence, by the Fubini theorem,
H.-t (N) is mL X m2 X menull. Therefore, for m2 X mea.e. (x,7) and for
mL-a.e. s,
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Hence, for m2 X mea.e. (x, r;),

79

J 10(s,r1l2x(s, ')+r;('))ldmL(s)
Ca,bJ

~J 1I0(s, ,) 11,-00 dmL(s)
ca,bJ

=/1011001
<00.

Thus F(T1I2X (', .) +r;(')) is defined and I(Tl/ 2X( ' •• ) +r;(.)) I~ 11011,_00
for m2 Xmea.e. (x. r;) in C2[RJ XCl [a. f3J. The proof of this lemma is
complete.

2. An operator-valued Yeh-Wiener integral and a Wiener
integral equation

First of all, we calculate an operator-valued Yeh-Wiener integral for
[F(x(· • •))In. Let

L1n,a= {Cs}, S2, .... Sn) Ia<sl<s2<'"<sn<b} and so=a, sn+1=b.

THEOREM 1. Suppose c/J is in W(Cl [a,f3J).
Then for mea.e. r; in Cl [a, f3J and A>O,

[lA (Fn)c/JJ r;( ')=n! J JnH {JiO(si, r l12t PjWj(') +r;(. »} c/J(r1l2

~"'" l!.lC, ca.P] k=l j=l

n+l n+l n+l
'L.PjWj(') +7)(") )dnml(Wj)dnmL(Sk)
j=l j=l k=1

where pj= {(Sj-sj_l)/2r1l2 for j=l, 2, .... n+1.

Proof. From Lemma 1, there is a null subset N of C2[RJ x Cl [a, PJ
such that F(r1l2x(". ") +r;(')) is defined on Ne. By the Fubini theorem.
there is a null subset NI of Cl [a, f3J such that for r; in NI'. N(~) is
m2-null. Let r; be given in Ni' and A>O be given. Then

[lA (Fn) sbJr;( ")

=J {J 0(s,rl / 2x(s, ·)+r;(·))dmL(s)}n
c. eR] Ca,b]

X sb(rl12x(b, ,) +r;(.) ) dm2 (x)
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Step (1) follows from the Fubini theorem. Since the integrand is
invariant under permutations of s-variables, the integral over the n!
simplexes are equal. Hence we obtain Step (2). Step (3) follows from
the Fubini theorem which will be justified below. Step (4) follows from
the n-parallel lines theorem [1, p.23J.

Now,

J IF(rllZx(· • •) +7)(' » 11 sb(rl/Zx(b• •) +7)('» Idmz(x)
c. [RJ

[1]
S;; /I0/l:'I! IsbO-lIZx(b• •) +7)('» Idmz(x)

c. [RJ

[2J
= /1011:'1 f Isb(rllZ {(b-a) /2} lIZy (. ) +7)('» Idml (y)

C, [«.,6J

[3J< 00.

Step DJ results from Lemma in section 1. Step [2J results from the
one-line theorem [1. p.21]. From the definition of W(C1 [a. ,8J), we
have Step [3].

This justifies the use of the Fubini theorem in Step (3) above. Thus
the proof of this theorem is complete.
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Applying the dominated convergence theorem, we obtain the following
corollary.

CoROLLARY. Let F(.x(·, .»=exp{f 8(s, r 1/
2.x(b, ·»dmL(s)} for.x

CG,h

in C2*[R]. Then for mea.e. 'YJ and ..( >0,

This value is denoted by G(a,7).

THEOREM 2. Under the assumptums in Lemma in section 1 and Theorem
1, G satisfies the Wiener integral equation for a.e.-7);

G(a, ''YJ) = f cjJ(..<-1I2 {(b-a) /2} 1I2W (') +7)(') )dml (w)
Cl [&,P]

+f J 8(s,i':1/ Z{(b-a)/2}1/2W(') +7)('»
c",h Cl C-,lIl

xG(s, r 1l2 {(b-a)/2} 1/2w(.) +7)(' »dml (w)dmL(s)

for a.e.-7).

Proof. From the following equalities, the proof of this theorem is
complete.

f cjJ(r1l2 {(b-a) /2} 1/2w(. ) +7)(') )dml (w)
Cl C-,II]

+f J (J(s, r 1l2 {(b-a) /2} 1/2W (' ) +7)('»
[".h Cl C<I,II]

xG(s, r 1 / 2 {(b-a)/2} 1I2W (') +7)(' »dml (w)dmL(s)
(1)
= f t/J(..<-1I2 {(b-a) /2} 1/;' (. ) +7)(' »dml (w)

Cl C<I,p]

+f:J f cjJ(s.r1l2{(s~a)/2p/2w(·)
..=0 CG, ., Cl C<I. Pl
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x+l x
+r1/2 {(s-a)/2}l/2W(·) +7](.» dnml (Wj)dOmL(Sk)]

j=1 k=1

Xdml (w)dmL(s)
(2)
= f r/J(rI/2{(h-a)/2}I12w(·)+7](·»dml(w)

Cl [",/I]

00 f J -+1 k
+x~ .4.+". -;;CI[".~J ~UO(Sk,rll1j~pjWi(·)+'1(·»}

t-l

(4)
= G(a, 7]).

From Corollary of Theorem 1, Step (1) holds for a.e.-7]. By the
dominated convergence theorem, we obtain Step (2). Let SI=S and Sk=
Sk_l for k>2. Then we have Step (3). Step (4) follows from the
denfiition of G.

EXAMPLE. Let (J) be a measurable function everywhere defined on
[a, bJ X [a, fiJ X Cl [a, PJ such that

f f 114)(s, t, .) 1I._oodmL (t)dmL (s) <00.
cs, b] [",11]

Let F be a functional on Cz*[RJ given by

F(y) = {f f 4)(s, t, yes, •) )dmL(t)dmL(S)} x.
[S, b] c..,~]

Suppose r/J is in W(C1 [a, fiJ) such that ifJ(x) =(>(x(fJ» for some ep in
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L.,,(R). Let 0 be a functional on [a,b]xC1[a,,B] given by O(s,Tj)=

f (/)(s, t, 7)(t))d.mL(t), 11011..1<00. Hence, by Lemma in section 1,
t",lll

for '<>0, F(r1/ 2x(0,0)+Tj(0)) is defined for m2xmCa.e. (x,Tj) in
C2 [RJ XCl [a, .BJ. From Theorem 1, [11 (F") 4'J7) ( 0) exists for a.e.-7) in
Cl [a, .BJ. Let d",,,= {est. $2, ••• , Sn) !a=SO<Sl<S2<···<S,,<.B}. By Theorem
1, the Wiener integration formula[6] and the change of parameter, the
following equalites hold Jor a.e.-Tj;

[11 (Fft) 4'J7) ( 0)

=n!f f·tl O;O(s"r1l2:EPjWj(0)+7J(0))}40,. /!lC1 t ..,,8] .6=1 j=l

n+l n+l nH
X ~(rl/2LPjUj.nH +7)(.8)) [n n {27r(t,-t'_1)} -112

j=1 .6=1 j="

Xexp{ - (Uj,,,-Uj,'_l) 2/2 (t,-t'_l) }]

"1"1 n n
xdn nmt..(Uj,.6)dnmL(t.6)dnmL(S.6)

.6=1 j=" '=1 .6=1

n "+1 "+1
+ 7) (t.6) )} ~ (LVj,"+1 +7)(.8)) n n [pj-l {27r (t,-t'_l)} -112

j=l "=1 j="

X exp {-.< (Vj,,,-Vj,"_l) 2/ (2pl(t.6-t.6_1))} ]

n+l "+1 " "
xdn nmL(vj,,,)dnmL(t.6)dnmL(S') •

.6=1 j=.6 .6=1 6=1
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