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PROBABILISTIC PROPERTIES ABOUT PERMANENT OF
RANDOM (0, I)-MATRICES

WI CUONG AUN, BONG DAE CHOI AND KYUNG HYUNE LEE

Let C(n, m, N) be the set of all n X m Boolean matrices among the
components of which there are exactly N components are equal to 1,
all the other components are equal to O. The total number of matrices

wE-C(n, m, N) is given by (N)' Let P be a uniform distribution on

C(n, m, N), i.e., pew) =(Nf1

• In other words, each of the (N) ele

ments of the set C(n, m, N) has the same probability (nNf1
to be

selected.
The permanent of n Xm matrix w= (W;j) , written by per(w), is defined

by

per(w) = LWl.(J)W2.<l) ···Wn.(n)

•
where the summation extends over all 1-1 maps from {l, 2, "', n} to
{I,2, "', m}, (n<m). If n=m, then the terms in per(w) are, apart
from the sign, just terms in the expansion of det(w).

P. Erdos and A. Renyi[3,4J have investigated the limiting probability
of the event that random matrix w has a positive permanent when n=
m. This paper is concerned with the limiting probability of the event
as above in the case of n<m.

A row or a column all elements of which are equal to 0 is called a
O-row or a O-column for the sake of brevity.

Let

R(n, m, N) = {wEC(n, m, N) Iw does not have O-rows}.
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LEMMA 1. IR(n, m, N) I=:~( _l)i(~)(n1J)m).

If N= nm then IR(n, m, N) I -+1 as n<m-+oo
2 ' IC (n, m, N) I -'

Proof. Let P be the uniform distribution on C(n, m, N). Define a
random variable X on C(n, m, N) by

X(w) =the number of O-rows of matrix w.

Then X can be written as

..
X=L:ei

i=1

where

_ (I if i-th row is all of zeros,
ei - 0 otherwise

Let Bk=E(1") be the binomial moments of X. It is known 151 that

P(X=j) =1;.;<-Ok-/C)Bk.
Now let us show how to calculate Bk,

B - E(X)-El L: (e1)(£2)... (e..))
k- k - \.,+ ... H.=k kt kz k..

k,=O,1

=E( L: eil£I, ···£1,)
1,<···<1.

= L: E(e· e· .••£. )
1,<1.< •••<1. J.l. 1.

= L: P(e,,=l, el.=l, ... , £1.=1)
J.<J.<···<h

=(n) IC(n-k, m, N) I
k IC(n,m, N) I .

Since P(X=O) is the probability of the event of matrices without
O-rows, we have

P(X=O)= ,IR(n, m, N) L
.,IC(n, m, N) I
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Thus we have

IR(n, m, N) 1= IC(n, m, N) IP(X=o)

"= IC(n, m, N) 12:(-l)jBj
j=O

To show that

We calculate

= ~o(-l)j(j)(n];j)m).

IR (n, m, N) I -+1 as m>n-HX).
IC(n, m, N) I

IR(n, m, N) I
IC(n, m, N) I

E\_Oi(Tf)(n-i)m)
i=o t N

Here we used the Bonferroni's inequality[5] and

(
nm)/"'V Cnm)N
N N!

LEMMA 2. Let Tn," be the number of matrices in R (n, m, N) without
O-columns. Then

Tn,m=j~(-l){j) IR(n, m- j, N) I.

Proof. The proof is similar to that of lemma 1 and is omitted.

LEMMA 3. If N= n; and men) =o(exp n/2), then

Tn,.. <
-'--:1R;::"""C"---n--'--,2m':::",N=)'--I--1 as n_m_DO.
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Proof. By lemma 2 and Bonferroni's inequality, we have

Tn,... JR(n,m-l,N)_1
IR(n, m, N) I >I-m IR(n, m, N) I .

By lemma I, we have

=0(1).

Thus lemma is proved.

LEMMA 4. Let On, ... be the number of matrices in R(n, m, N) without
O-columns and per(w) =0. Then

15 /2( 2m ) (nm-2(m-I») "or m>5n, ... '::::" m+I N JI -'

1'1 N = nm th 0"... 0 >2' en IR(n, m, N) I - as m_n-OO
•

Proof. By the Konig-Frobenius theorem, we have

i5 <n~ (n) ( m ) (nm-k(m-k+ 1) )
n''''-«=2 k m-k+I N
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+":f!(m) ( m ) (nm-k(m-k+l»).
k=3 k m-k+l N

Since nm-3(m-2»nm-k(m-k+l) for all k with 3sksm-2 and
m>5. we have

/j sm3 (nm-2(m-l)) + (nm-3(m-2») "t2
(m) ( m )

"... N N k=3 k m-k+l

The last inequality is obtained from the facts that nm-2(m-l»nm
3(m-2) for all m>4 and

Since .ss ( 2m ) for m>6. we havem+l

a.....s2(';.~~\ )(nm-~m-l)) for m>5.

Next we prove that

IR(n. m. N) I -+0 as m>n-+oo

Since

a.....
IR(n. m.N) I

it is enough to show that
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It can be shown hy stirling's formula that

By (h) and (c), we have

n( (n-Nl)m)
I"J n,J11i ~O as m>n~oo

--=-(m-=2=-:;-I---'-)--'-:(-n-m---=2::-:Ji"m---I"')-:)- 2'" _.

Thus lemma is proved.

THEOREM 5. Let P be the uniform distribution on R(n, m, N). If

N= n; and m=o(exp n/2). then

P{wER(n, m, N) : per(w»O}~l.

Proof. Let C"m(j) = {wER(n, m, N) : w has exactly j O-columns} and
A.....= {wER(n, m, N) : per(w) =o}.

Then

Hence
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..-1
P(A...) = 2:;p(A".. nC"..(j»

j=O

For m-n+ l::;:j::;:m-l, it follows from Konig-Frobenius theorem that
we have C"..(j)cA.....

Thus p(A"lIInC"",(j»=P(C".. (j» for m-n+l<j::;:m-l. It can be
written that

( m
J
. )r",III-i

P (C".. (j» = ~~-=-----=~
IR(n, m, N) I '

where r",r is the number of .a11 Boolean w's in R(n, r, N) which do not
have Q-columns. Note that

..-1 (m)
~o j r",,,,-j= IR(n, m, N) I.

For O::;:j<m-n, we have

IR(n, m, N) I

where o.,r is the number of all Boolean w's in R(n, r, N) with per(w) =0
which do not have O-columns.

Thus we have

IR(n, m, N) I

Therefore we obtain

P(A.",") =l-P(AII",)
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~: (j) Tn,m-i i=JLl (j) Tn,m-i

IR(n, m, N) I IR(n, m, N) I
m_n (m)
~o j (rn,m-i-On,m-i)

IR(n, m, N) I
> rn,m-on,m 1
- IR(n,m,N)1 - •

Here we used lemma 3 and 4.

m_n(m)
~o j On,m_i

IR(n, m,N) I

THEOREM 6. Let P be the uniform distribution on C(n, m, N).

If N= n; and m=o( exp ~), then

P{wEC(n, m, N) Iper(w»O}-l.

Proof. Clearly if the permanent of a matrix is positive then, by
Konig-Frobenius theorem, the matrix does not have O-rows. Hence we
have

P{wEC(n, m, N) Iper(w»O}
I {wER(n, m, N) Iper(w»O} I

IC(n, m, N) I
I {wER(n, m, N) \per(w»O} I

IR(n,m,N) I
-l.

Here we used theorem 5 and lemma 1.
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