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o-SINGULAR SPECTRUM
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1. Introduction

Beurling[1] and Roumieu[6], [7] generalized the theory of Schwartz
distributions around 1960. In Beurling's ultradistribution theory log(1+
[€]) is replaced by more general subadditive function w(£). Then the
test function space &7, is smaller than &, and the class of ultradis-
tributions &,’ larger than &’. On the other hand, in Roumieu’s
ultradistribution theory the test function space C,” is replaced by the
non quasianalytic Denjoy-Carleman class Ct, (See Hormander[4], [5]).
Also the theory of Beurling’s ultradistribution was refined in Bjorck[2]
to generalize most of the theorems in Chap. III, IV, VI of Hormander
[3]. ‘

In this paper we shall atiempt to give an easier treatment of
microlocal analysis for somewhat restricted class of Beurling’s ultradis-
tributions. This class that we consider here can be slightly different
from the class considered in Hormander[4], [5].

In the next section, following Bjorck[2] we recall the standard
notations, definitions, and theorems to state Paley-Wiener type theorems
for Beurling ultradifferentiable functions and ultradistributions. We refer
to Bjorck[2] and H6érmander[4] for the other notations appearing in
the next section.

2. Definitions and Paley-Wriner Theorems

We mainly limit ourselves to the following class of concave functions
in the sequel.

DEFINITION 2.1. £2(¢) is said to be a concave function of convergence
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type if £2(¢) is an increasing continuous concave function on [0, c0).
The following conditions should be required for the existence of test
functions and the partition of unity.

DEFINITION 2.2, We denote by .4 the set of all functions @ on R»
such that

(a) 0(&)=2(]&]) where 2 is a concave function of convergence type,

® 1@ = [ 2 a0,

Following Beurling[1] and Bjorck[2] we now introduce the definition
of ultradifferentiable functions.

Let w47, ¢<L'(R") and 2 be a real number. Then we write

lglhi= [ 18(@) lewae.

DEFINITION 2.3, &, is the set of all ¢=L!(R*) such that ¢ has
compact support and |{¢[l;<co for all 2>0. The element of &, is called
a ultradifferentiable function. Also if ECR" then

F.(E)={¢=F.; supp ¢CE}.

Let K be compact and 2 open. Then as in the case of 2 (K) and
(), Z.(K) is a Fréchet space under the seminorms ||-|l. (m=1,
2-+) and & ,(#2) can be defined as the inductive limit of Fréchet spaces
Z.(K).

If w4, then Beurling showed that the condition (8), the existence
of partitions of unity and the nontrivialness of &, are all equivalent.
Also he showed for w=.¢" that & ,(2)CC,"(2) for every open set 2
in R* if and only if for some real a and positive & we have

o(®)>a+blog(1+]£]) Yé=Re,
Now we are in a position to define the Beurling class &2,

DEFINITION 2.4, We denote by &% the set of all continuous real
valued functions o on R" satisfying conditions (), (8) and (7) :

(a) 0(&)=8(|&|) where 2 is a concave function of convergence type,

® 1@ = 2D ar<eo,

(7) there exist real a and positive & such that
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w(@)>a+blog(1+1€]), &R

We will now state the generalized Paley-Wiener theorem for ultra-
differentiable functions.

THEOREM 2.5. Let w=SF and let K be a compact convex set in R"
with support function H, If U is an entire function of n complex

variables {=E&+ip=({,, -+, {a), the following three conditions are
equivalent:

(i) For each 2>>0 and each €0 there exists a constant C,, such that
[ UG+ |ewde<C, min, ek,

(ii) For each 2>0Q and each €0 there exists a constant C,,,’ such that
|U@E+in) | <Gy, lefmtetalmieo - pgpipe=Cn,

(i) UQ) = f 50 ¢(2)dr with some =D (K).

DEFINITION 2.6. &,(2) is the set of all complex valued functions ¢
in 2 such that if = ,(2), then y¢=F,(Q).

As in the Schwartz distribution theory we now define the Beurling
ultradistributions.

DEFINITION 2.7. Let w&=%# and let 2 be an open subset of R"
Then &,/(Q) is the space of all continuous linear functionals on
Zz.(2).

Finally, we need the following generalizations of support and singular
support for Paley-Wiener-Schwartz theorem and microlocal analysis in
the Beurling ultradistribution theory.

DEFINITION 2.8. Let we=#. I w2,/ (2), the support of u(denoted

by supp #) is defined as the smallest closed set K such that «=0 in
2N K,

DEFINITION 2.9. Let w; and o=, I ucZ,,/(2) the o-singular
support of u (denoted by sing, supp «) is defined as the smallest closed
set K such that 2&&, (2N K°).

We can now state the Paley-Wiener-Schwartz theorem for ultradis-
tributions with compact support.
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THEOREM 2.10. Let w=SB and let K be a compact convex set in R*
and let H be the support function of K. If U is an entire function of
n complex variables {=E+in=({,, -, C.), the following three conditions
are equivalent: '

(a) For some real 1 and all positive ¢, there exists a constant C,,, such
that

fn' | U(E-l—i,?) Ie"“"(f’dég(};,,e’“"”""',

(b) For some real A and all positive ¢ there exists a constant C,,,/ such
that

I U($+i77) |-<_C1’eleﬂ(ﬂ)+:|7]l+lw(é‘)’ $+i77€C”.

(¢) U is the Fourier-Laplace transform of some u=&, with
supp #C_K,

3. Main Results

Making use of Paley-Wiener theorem we will define thet w-singular
spectrum for Beurling ulradistributions. We start from the simple
consequence of Paley-Wiener theorem.

LEMMA 3.1. Let o=# and v&=%&,’ (R"). Then v=Z ,(R") if and
only if for every positive number 1 there exists a constant C; such that

15(8) | <Cre2®, =R,

Proof. The proof is clear by the equivalence of (ii) and (iii) in
Theorem 2.5 (Also see the proof of Theorem 2.10.).

It is clear from Definition 2 that for v&=%,’ sing, supp v can be
interpreted as the set of points having no neighborhood where v is in
& .. Now we introduce the concept of cone which describes the direction
of the high frequencies causing singularities.

DEFINITION 3.2. If v&=&,’, then the cone X(v) is the set of all
»&=R™\0 having no conic neighborhood V such that for every 21>>0 there
exists C; with

[9(8) | <Cie2®, EEV,

It is clear that ¥ (v) is a closed cone in R"\0. Using the following
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theorem we can combine the information about the location of the
singularities and the singularity cone X (v),

THEOREM 3.2. If ¢=Z (R") and v=&, (R") then
S(gv)C 3 (v).

Proof. The Fourier transform of u=¢v is the convolution
A — 1 b ~ _
26 =i [ B0~

By Theorem 2.10 there exist some real i, and a constant C, such
that

|5(6) | <Cre®, ¢=Rm

Let us split the integral into two parts where |77|<—%—]E | and |p|>
—;:IEI. Note that |£—7|<(3|y| in the second case. Hence

e a@I<[  18@8E- |d
+f Inl=i/21¢1 Ié(”)ﬁ(f""i) |dn
=T+IL

Then
I<  sup " 19 () | bl

I gt <1/21

It follows from Theorem 2.10 that

n<c, | |30 |y

(nlz=1/21¢1

<a | HOIC X
Inlz1/721¢81

Note that the concavity and the increase of  is essential in the above
inequalities. Thus

@m)|aE | < sup Iﬁ(v)Hk}HquC’lf |6 (7) | e dy.
l3—81<1/21¢1

Ipl=1/21¢!

Let I" be an open cone where
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|5 (&) | <Che2o®

ie., '=(Z(v)) and let I''CI'J {0} be a closed cone. Then we can
choose 0<¢<1 so that ps<=I' if ¢=I', and |&—7|<c|¢|. Since |&|—

9| <lg—71<elé], we have |§]<—L—1yl.

Therefore we have for 1>0
(2r) "s;gp e ® 48] gsutpw(,y) | ligllziere /1=
1 7€

iy 320 () yAw (3/1¢)
+le1u|>1/z|51l¢(’7)le ver d,?
=JII+1V.

Then

MI<sup|d(n) [e 1/ 17 #D It {ig|,s,
3=l

where [ 7 denotes the Gauss symbol, and
IVSle M’S(,]) | gBdtatmtadt/3c-am) gy
Set
1
e
3 —¢)

We consider the following two cases.

i) k<1, ie., c<_§.

Since @ is increasing

W<, [ 130 o=y,

ii) £>1, ie., Q%
Similarly,

IVSle |¢?(,7) ‘esm(( &1 +1),,)d77.

For case i) we have for every 1>>0
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(2n)sup| (&) | ®
Ssupli?(v) Ie( £1/1~eld +1)2»(a)"¢”L, +le |$(,}) [e“""’dry.
yEr

It remains to show that the right hand side of the above inequality is
finite. Since

|9 () | <Cpe#*@ for every p>0,

the first term is finite. For the second term let A= n;—l . Then because

of condition (7) in Definition 2.4

#+l w(y)

[18@) 1 =0an< [ 15D |ewrim=me™ "V gy

5+l wly)

SSUPW(U) le(‘““"”") f e b dy)<oo_
<R

The case ii) can be proved similarly.
Let £2 be an open set in R* and =2,/ (). We set for 2R,

Sau= [;]Z’(gbu), PP, (2), ¢(x)F0.
THEOREM 3. 3. If ¢=2.(2), ¢(z)7#0 and supp ¢— {x} then
3 (gu) 2. (u).

Proof. Let V be an open cone containing X.(x). Then the existence
of local unit and the compactness of unit sphere allow us to find ¢, -,

¢j€9 .(2) with
$1 () - 8;(x) #0,
r:LS (¢.-u) V.

When ¢=Z,(2) and supp ¢ is so close to x that ¢,---¢;540 there, we
can write ¢=¢¢,---¢; with p=F (2). Also it follows from Theorem
3.2

E’(¢u)Cff]E(¢,-u)CV.
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Since ¥ (gu) DI, (x) when ¢(x)7#0 by definition the theorem is proved.
Finally we are now in a position to define w-singular spectrum.

DEFINITION 3.4, If ucc<7,/(2), then the closed subset of 2x (R"\0)
defined by

sing, spec u= {(z, )2 X (R"\0); £<=3,(u))}

is called w-singular spectrum of u, Because of this definition it is clear
that its projection in 2 is sing, supp «.

REMARK. Most of the theorems on singular spectrum can be directly
generalized for w-singular spectrum. We leave this to the reader.
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