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A CENTRAL LIMIT THEOREM FOR ASSOCIATED
RANDOM VECTORS

T AE,SUNG KIM

1. Introduction

A finite family {Yh "', Y..} of random variables is said to be associated
if for any real (coordinatewise) nondecreasing functions f and g on R"

whenever this covariance exists.
Infinite families are associated if every finite subfamily is associated.

This definition is due to Esary, Proschan, and Walkup (1967).
There are two almost independent bodies of literature on the subjects

of associated random variables. One developed from the work of Esary,
Proschan, and Walkup(1967) and Sarkar(1969) and is oriented towards
reliability theory and statistics; the other developed from the work of
Harris(1960) and of Fortuin, Kastelyn and Ginibre(I971) and is oriented
towards percolation theory and statistical mechanics.

It should be noted that in the latter literature, the term 'associated'
is usually not used but rather variables are said to satisfy the FKG
inequalities.

Associated sequences of random variables have been studied extensively
in recent years. Under some restrictions on· covariance a wide number
of limit theorems have been proved for associated sequences of random
variables. Newman(I980) proved the central limit theorem for associated
sequences of random variables and he showed a general central limit
theorem for associated random variables in 1983.

In section 2 we introduce a generalization of association to Rd-valued
random vectors and find a characteristic function inequality for associated
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random vectors using ideas of Newman (1983). With this inequality
a central limit theorem for associated random vectors is proved in
section 3.

2. A characteristic function inequality

DEFINITION 2.1. A sequence {X= (Xil•..•• X id). i>l} of Rd-valued
random vectors is said to be associated if for all coordinatewise non­
decreasing functions f. g on RRd

whenever this covariance is defined.
R

Let Sn= EXi denote the partial sum of the sequence {Xi, i>I}. We
i=1

denote the j th coordinate of the vector Xi by Xii, 1<j<d and in the same
n

way we put SR/= EX/. Furthermore, we define for a sequence {Xi.
i=1

i>l} of stationary associated R,cvalued random vectors with mean zero
and finite second moment:

(2.1)
and

We observe that all the entries in the infinite sum defining Ail are non­
negative, hence Ail is always defined and we will assume Ail is finite.

Note that {ail(n)} is increasing and aij(n)<Ail<OO. by (2.1), and
association.

A sequence {Xi. i>l} of random vectors satisfies stationarity (transla­
tion invariance) if for all m and for all j, kh k2• •••• klllERd, (XJl " •••• X Jl.)

has the same distribution as (X/HI,···. X/+Jl.) •
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Newman's Inequality (Newman, 1980,1981). Suppose Yh "', Y" are
associated random variables with finite variance; then for any real
rh "', r"

" "IE[exp(iI:;r. Y.) ] - nE[exp(ir. Y.) ] I
.=1 .=1

(2.2)

According to Newman(1984, page 134; 1983, page 77) for I and 11
complex functions on Ra, we write 1<.11 if I.-Re(exp(ial» is
coordinatewise nondecreasing for all a. Note first that I1 = (/1- Re(/»
+ (/1 - Re (-f» /2 and hence is automatically nondecreasing and next
that I<~JI for real I if and only if 11 +1 and 11-1 are both nonde­
creasing.

PROPOSITION 2.2. (Newman, 1983, Proposition 1; 1984, Proposition
15). Suppose that f<ti::/l and g<gl and that Xl. X 2, ••• are associated;
then

C (f . » { ICoV(/,K)-I. il f or g is refll (2.3a)ov logl _ .
ICov(/,g) 1/2, otherwISe, (2.3b)

and

Cov(fhgl»ICov(exp(il). exp(ig» 1/2,
if I and g are real. (2. 4)

Using (2. 4) of Proposition 2. 2. we reduce following lemma which
allows us to extend Newman's Inequality (2. 2) to associated random
vectors at the cost of an additional factor of 2 on the right hand side.

LEMMA 2. 3. Suppose Xl and Xl! are associated R''-valued random
vectors. Then for any rh r2ERd

where

t}(rh r2) =E(exp{irlXtl exp{ir2X2} ),
t}j(rj) =E(exp{irjXj }). j=1, 2,
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Proof. Let

and let
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(2.6)

where for any s we define s+=max(s,O) and s-=max(-s, 0).
Then

(2.8)

Since all four functions f+, f-, g+ and g- are coordinatewise nondecre­
asing by the notion before Proposition 2. 2 we have

f<tt.fl for real f, g<tt.gl for real g.

(2. 6) and (2. 7) yield

I,p(r!> r2) -rpl (rl),p2(r2) I
= IE(exp{irIXd exp{ir 2X2}) - E exp{ir1XdE exp{ir2X2} I
= ICov(exp{ir1Xd, exp{ir2X2}) I

(2.9)

d d d d

= ICov(exp{iO::::rl/XIj- I;rIi-XIj)} , exp{i(I;rZk+X2k - L;r2k-X Zk)}) I
~l ~l ~l ~l

= ICov(exp{i(f+- f-)}, exp{i(g+-g-)}) I
= \Cov (exp(if) , exp(ig)) I=[Q].

(2. 4) of Proposition 2. 2 and (2. 9) provide
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which completes the proof.
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(2.10)

THEOREM 2.4. Let {Xi=(Xih ''', X id), i>l} be a sequence of stationary
associated R4-valued random vectors. Let tPi be the characteristic function
of Xi and let tPN be the joint characteristic function of X h "', X N• Then
for any vectors rl> "', rNERd we have

(2.11)

Proof. (2.11) follows from (2.5) by induction on N. The first step
of the induction argument to prove (2.11) is true for N=2 by Lemma
2. 3. Assume that (2. 11) holds for N -1. It remains to show that this
argument is true for N. Using the triangle inequality and Lemma 2.3
we obtain
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3. A central limit theorem

The next theorem gives us a central limit theorem for associated
random vectors, which is an extension of a central limit theorem for
associated random variables (Newman, 1980).

THEOREM 3.1. Suppose {Xi, i>l} is a sequence of stationary mean zero,
finite second moment, R'Cvalued random vectors which are associated and
such that

(i) Gij(n)-A;j as n-H)() for all i, j(l<i, j<d) , A;j<co

(H) El J"n -r<co;

then (1/ "';n)Sn converges to normal law with nondegenerated covariance
matrix A.

Proof. It is sufficient to show that for all vector A= Oh ..., Ad) ERd,

Eexp {i CA, Sn) }-exp«- AAAt ) /2) as n_co, (3. 1)

where (A, Sn) =A1Sn1 +A~n2+ ... +AdSnd and

At is the transposed matrix of A.

If we define m(n)=[n/kJ, then we have that m_co as n-co. For
any A= (A1o ..., i.d)ERd, define

d

Yj=EXijAj.
j=1

Thus (3. 1) becomes

IEexp{i(A, Sn/ "';n)} -exp ( - ~ AAAt
) I

= IEeXP{i(jESnjAj/"';n)}-exp ( - ~AAAt) I

(3.2)
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= IEexP{i(tl ~IXVjAj/ .In)} -exp( - ~AAAt)

= IEexp {itlYv/ .In} - exp ( - ~ AAAt )

as n-wo.

Using triangle inequality (3.3) is bounded by (1) + (ll) + (Ill) ;

n _ mk_
( I) = IEexp{i~ Yv/ .J n} -Eexp {iI; Yv/ .Jmk} I,

v=1 v=1

(3.3)

mk m k

(ll) = IEexp {i~ Yv/ .Jmk} - nEexp {im-1/2 (k-1/2I; Yv)} I,
v=1 1 v=1

(Ill) = IIi:Eexp {im-1I2 (k-1I2t Yv)} - exp ( -1..AAAt
) I.

1 .=1 2

Now it remains to show that all (I), (ll), and (Ill) converge to zero
as n goes infinity. In order to prove this we consider it as following
three steps:

First step; by the inequality Iexp (ix) -11 < Ix I and Cauchy·Schwarz's
inequality,

n mk_
(1) = IEexp {iI; Yv/ .In} - Eexp {i~YJ .Jmk} I

.=1 v=1
n mk _ n

= IE[exp {iI; Yv/ .In} (1 --- exp {i(~ YJ .Jmk-~ Yv/ .In)} ) ] I
v=1 v=1 v=1

mk _ n

<Ell-exp{i(~Yv/ .Jmk-I;YJ .In)} I
v=1 v=1

mk _ n

<El ~ YJ .Jmk- I; Y./ .In I
v=1 v=1

mk _ n

<EII;(YJ .Jmk- YJ .In) I+EI I; Yv/ .Jnl, since
v=1 v=mk+l

m= [~ ] I.e. mk<n
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as n~oo. (3.4)

Next step; let

(3.5)

1lhen (3.2) and (3.5) give us

'" A d
- " -1/2"k-1I2("X ' )- £,...,m £,..., £,..., A(v-l>+piAi

v=1 p=1 i=1

.. d

= l:;m-1/2l:;ZviAi
v=1 i=1

and

d

= l:;ZIjAj.
j=1

On the other hand from the stationarity of {Xi, i>l}

(3.6)

(3.7)

Eexp{i(AI ,,; m)ZI} = Eexp {i(AI ,,; m)Z2} = ...
= Eexp {i(AI ,,; m)Z",}. (3.8)

We apply 1lheorem 2.4 with rl=r2=r3="·=r..=J..1 ";mERd, and com­
bine (3. 6), (3. 7), and (3. 8) to obtain the following bound on (IT);

'" m
= IEexp {il:; (AI ,,; m) Z.} - nEexp {i (AI ,,; m) ZI} \

v=1 1

.. III

= IEexp {il:; ClI ,,; m) Z.} - n Eexp {i (AI ,,; m) Zv} I
v=1 v=1
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where

Generally

d

:::;::211.<W E E m-1Cov (Zrl, Z.i) ,
l:$r<.s.. 1,}=1

11'<112
="<1

2+... +"<l. (3.9)

III wo ..

E Cov(XI, Xi) = Cov(EXI, EXI) - ECov(X;, XI) (3.10)
ISI<}Sm 1=1 1=1 1=1

holds.
From the stationarity of {Xi, i>l} we have

(3.11)

Applying (3.5), (3.10), (3.11), and (2.1) to (3.9) we obtain

(3.12)

Note that by the assumption (i) of this theorem the above convergence
holds. Recall that O'li(n) <Ai and {O'li(n)} is an increasing sequence.
Finally, by el"'---l +ix- (x2/2) and mean zero we have
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k k
E(exp {im-1/2 (k-1I2L; YI'» ~:] - (l/2mk)E(L; YI')2

1'=1 1'=1

1 k d

=1- 2m ES~ i:'ftXl'i).;/ .J7iF

= 1- 2~ E (i~J.iSkJ .J7i) 2

and

(3.13)

Since O"ij(k)--+A;j as k--+oo (assumption (i) of this theorem)

L;--+A as k--+oo.
k

(3.15)

Applying (3.13), (3.14), and (3.15) to (ill) we obtain

IiiEexp {im-112 (k-1/2f:; Yl')} -exp ( --LtAlt) 1--+0 as k--+oo (3.16)
1 ~1 2

By combining (3.4), (3.12), and (3.16) we complete the proof.
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