Comm. Korean Math. Soc. 3 (1988), No.1, pp.25~35

A CENTRAL LIMIT THEOREM FOR ASSOCIATED
RANDOM VECTORS

Tae-Sunc Kin

1. Introduction

A finite family {Y3, ---, Ya} of random variables is said to be associated
if for any real (coordinatewise) nondecreasing functions f and g on R™

COV(f(Yl, "t Ym)’g(Ylp "t Ym))ZO9

whenever this covariance exists.

Infinite families are associated if every finite subfamily is associated.
This definition is due to Esary, Proschan, and Walkup (1967).

There are two almost independent bodies of literature on the subjects
of associated random variables. One developed from the work of Esary,
Proschan, and Walkup(1967) and Sarkar(1969) and is oriented towards
reliability theory and statistics; the other developed from the work of
Harris(1960) and of Fortuin, Kastelyn and Ginibre(1971) and is oriented
towards percolation theory and statistical mechanics.

It should be noted that in the latter literature, the term ‘associated’
is usually not used but rather variables are said to satisfy the FKG
inequalities.

Associated sequences of random variables have been studied extensively
in recent years. Under some restrictions on covariance a wide number
of limit theorems have been proved for associated sequences of random
variables. Newman (1980) proved the central limit theorem for associated
sequences of random variables and he showed a general central limit
theorem for associated random variables in 1983,

In section 2 we introduce a generalization of association to R?-valued
random vectors and find a characteristic function inequality for associated
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random vectors using ideas of Newman(1983). With this inequality
a central limit theorem for associated random vectors is proved in
section 3.

2. A characteristic fTunction inequality

DEFINITION 2.1, A sequence {X;=(Xj, -, Xu), 11} of R%valued
random vectors is said to be associated if for all coordinatewise non-
decreasing functions f,g on R™

Cov(f(Xy, -+, Xa), g(X;, -+, X0)) 20,
whenever this covariance is defined.
Let S,.=§IIX,- denote the partial sum of the sequence {X; i>1}. We
denote the 5 th coordinate of the vector X; by X;;, 1<{j<d and in the same
way we put S,.,-=§£X.-,. Furthermore, we define for a sequence {X;,

i>>1} of stationary associated R?-valued random vectors with mean zero
and finite second moment:

013 (n) =L E(SuiSu)

=E(XiiXy)) + L (n—k+1) (BX,iBay + EXuXa),

2= (0:j (1)) 15, jsa @.n

and
Ay=E(XyXy) + 5 (EXuXo+ EXuXy), A= (Ai)isi, e

We observe that all the entries in the infinite sum defining A;; are non-
negative, hence A;; is always defined and we will assume A;; is finite.
Note that {o;;(n)} is increasing and o;;(n) <A;;<oco, by (2.1), and
association.
A sequence {X;, >1} of random vectors satisfies stationarity (transla-
tion invariance) if for all m and for all j, %, &y, ---, 2.=R?, (X, -+, X3)
has the same distribution as (Xjys,, -, Xji).
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Newman’s Inequality (Newman, 1980, 1981). Suppose Yi,--, Y, are
associated random variables with finite variance; then for any real
rl’ onu’ rﬁ

| E[exp(iZr ¥i) ] M1 Elexp(irs Yi) |

2. |rir|Cov(Y;, Y2) 2.2)

1= <hsn

According to Newman(1984, page 134; 1983, page 77) for f and f,
complex functions on R* we write fLf, if fi-Re(exp(iaf)) is
coordinatewise nondecreasing for all «, Note first that f,=(f,—Re(f))
+ (fi—Re(—f))/2 and hence is automatically nondecreasing and next
that f<f, for real f if and only if f,+f and f,—f are both nonde-

creasing.

PROPOSITION 2.2, (Newman, 1983, Proposition 1; 1984, Proposition
15). Suppose that fLf, and g<Lg, and that X,, X,, -+ are associated;
then

‘ |Cov{f,g)l, if f or g is real (2. 3a)
Cov(fus)2 | |Cov(£.g) |/2, otherwise, (2. 3b)
and

Cov(f, &)= [Coviexp(if), exp(ig))|/2,
if f and g are real. (2.4)

Using (2.4) of Proposition 2.2, we reduce following lemma which
allows us to extend Newman’s Inequality (2.2) to associated random
vectors at the cost of an additional factor of 2 on the right hand side.

LEMMA 2.3. Suppose X, and X, are associated R%-valued random
vectors. Then for any ry, ry&R¢

| @ (71, 72) — 1 (r1) 2 (r2) |§2§; _,-é |71ir25| Cov (X4, X3;), (2.5)

where

¢(r1, r2) =E(exp{ir, X, }exp{ir.X,}),
¢j (ri) =E(exp{ir,-X,~}) » j= 1: 2,

d
r jX i =k§r ﬂ,X ke
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Proof. Let
d 4
f+=§rlj+X1j, f—=j§7'li Xy
= <
d d
g +=k§:1fzb+sz, g =2__:;Tah_lez (2.6)
and let

f=rr=f", fi=fr+f" g=g*—g~, g;i=g*+g", (@2.7)

where for any s we define s*=max(s,0) and s =max(—s,0).
Then

d d
f1=§llrulXu, g1=,§;1|rzk|sz 2.8
= =

Since all four functions f*, f~,g* and g~ are coordinatewise nondecre-
asing by the notion before Proposition 2.2 we have

SLf, for real f, g<g for real g. 2.9
(2.6) and (2.7) yield
|¢(ry, 72) — ¢ (r)¢2(r2) |
=|E(exp{ir,X,} explir,X,})—E exp{ir, X} E exp{ir,X,} |
=|Cov(exp{ir,X,}, exp{ir:X,})|

d d
= |Cov (exp {iFEIrl X1}, exp {ikgrszy} )|

d d d d
=|Cov (eXP{i(FEI”li+X1i —l_g”u_xli) 1 eXP{i(Elfzk‘LXu“h:Zlf o Xax) })|

= |Cov(exp{i(f*—F7)}, expli(g*—g )|
=|Cov(exp(if), exp(ig))|=[Q].

(2.4) of Proposition 2.2 and (2.9) provide
[Q1<2Cov( f1, 21)
d d
=2C°V(§llrlilxlh El"zhlxu)
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d d

=2~Z'1 hzl“’lﬂ'zhlcov(xu, Xo). (2.10)
J= =

which completes the proof.

THEOREM 2. 4. Let {X;=(Xj, -+, Xi4), i=>1} be a sequence of stationary
associated R*-valued random wvectors. Let ¢; be the characteristic function
of X; and let ¢" be the joint characteristic function of X, ---, Xn. Then
for any vectors ry, -+, rn&R® we have

14+, 1)~ 11470 |
<2 3 X dlrk; 7mj| Cov (X, Xnj) 2.1D

1=k<ms=N 1=i j=

Proof. (2.11) follows from (2.5) by induction on N, The first step
of the induction argument to prove (2.11) is true for N=2 by Lemma
2.3. Assume that (2,11) holds for N—1, It remains to show that this
argument is true for N. Using the triangle inequality and Lemma 2,3
we obtain

|G, v+, r) = 11 () |
LU (ryy woey 7)) — @V (s, e, ) g () |
+ ¥ (ry, oo, raca) g (rw) —“_LUIIQS-'(T;') |

. N-1 d N1 d
=Cov(exp{i (k§ '_=Zif‘k,-+in -—:-;1 _g;fki“in) },
. 4 d
exp{i (Jngj+XNi '"J_Z_;T N Xnj)})
N-1
+ | @¥ T (ry, e, rhy) —}:—[1¢-' (r) | {gn(rn) |
N1 d d
<2Cov (kZ:l le(m* +ru7) X, 21 (ruj*+7w;7) Xnj)
=1 i= 1=

VI (1, vy ) ~TIi () |
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N-1
=23, 2, dlf 7| Cov (Xu, Xnj)

k=1 18, js

Nt
+ 1Ny, oo, ) —‘_I=_11¢i ()|

d
=2 3, 1| raitmj| Cov (X, X))

1sk<m=N i j=

3. A central limit theorem

The next theorem gives us a central limit theorem for associated
random vectors, which is an extension of a central limit theorem for
associated random variables (Newman, 1980).

THEOREM 3.1. Suppose {X;, i>1} is a sequence of stationary mean zero,
finite second moment, R°~valued random wvectors which are associated and
such that

(1) a:;;(m)—Ai; as n—>oo for all i,j(1<i, j<d), Ai;<oo

(i) E .._'5_";7 * Coo;
then (1/ &/ 1)S. converges to normal law with nondegenerated covariance
matrir A.

Proof. It is sufficient to show that for all vector 1= (1, ---, ;) =R¢,

Eexp(i(2, S.)} —exp((—24%)/2) as n—oo, 3.1
where (4, S,) =2,S.+ 25,2+ -+ + 2,5, and
A is the transposed matrix of A,
If we define m(n)=[n/k], then we have that m-»co as n—oo, For
any 2= (4, >+, 2) ER?, define
d
Y}=]§Xii2j. 3.2)
Thus (3.1) becomes
| Bexp (i3, 5./ )} —exp( — 2242 |

= l Eexp{i (jésnjzi/ v n)}—exp ( - %‘IA‘P ) I
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d =

= | Eexp{i( XX,/ v/ n)} —exp( _%ZA,Z‘) l

=1 v=1
_ ] Eexp {ig";le/ V) —exp| —%W) \

as n—oo, (3.3)

Using triangle inequality (3.3) is bounded by (I)+ (IT) + (III);

(1)=1Eexp LY./ V7 ) —Bexp (S Y./ /b |,
(1) = | Eexp 8 Y,/ /mk) — [1Eexp @S]

" k
(1) = | ] Bexp (im™ /(¢ L Y.)) —exp( ~Liax) | .
1 »=
Now it remains to show that all (I), (II), and (III) converge to zero

as n goes infinity. In order to prove this we consider it as following
three steps:

First step; by the inequality |exp(iz) —1|<|z| and Cauchy-Schwarz’s
inequality,

()= | Eexp i Yo/ V7)) —Eexp i Y./ VB
— | Elexp 5 Y./ v 7} (1 —exp (S Y./ ymb— 5 Y./ D))
<B|1-expli(E Y/ vimb—£Y./ V7)) |
<E|SY./ k- 5./ V7|
<EIE(V/ b= Y,/ YT | +E| 53 Y/ /7], since

m= [—Z—] iLe. mk<n

g(Engv/J;n—zl2)l/z(l_ ﬂ)

n
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- oz 2y1/2 mk
+(E] 3 Y/ a9 f1--E
v=mk+] n
as n—»0o, 3.4
Next step; let
&
Zy=k~1/2X—:1Xk(1_.1)+l,, (3. 5)
=
Then (3.2) and (3.5) give us

mk — m k
EIYu/ v mk= Zlm_I/ZZik_l/z Yioo—ty4n
= = R=
m & d
= ;m—uz;k-l/z (§Xk(v—l)+pl'2i)
y= 2= i=

a
m V27,4 3.6)
i=1

1

¥

and

3 &
E1/2ye Y, =k /257 iX,,,-l,-

=<1 =1 j=1
d
=J_§Zli1i- 3.7

On the other hand from the stationarity of {X; i>1)}

Eexp{i(d/ vy m)Z,} =Eexp{i(2/ Yy m)Zy} ==
=Eexp{i(1/ ¥ m) Za}. 3.8

We apply Theorem 2.4 with ri=r,=r;=+=r,=2/ /mecR?, and com-
bine (3.6), (3.7), and (3.8) to obtain the following bound on (II);

(ID) = | Bexp G Eom™ /2.7, — [N Bexp lim 1" 22,04 |
= | Bexp i (1/ v m) 2.} — T Bexp i3/ /) Z3) |

= | Eexp {ig,l(l/ Jm)Z,) — !leexp {i / Vm)Z}|
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<2 Z E I ('2 Rl/m) |COV(ZTH v))
1sr<vsm i,j=
| VI Z‘ mCov(Zy, Z,;),
lsr<vsm i, j=1
where HAlP=a2+ -+ 24 3.9
Generally
iy Y Cov(X;, X;)= COV(ZX,, z;X) z:Cov(X,, X)) (3.10)
holds.

From the stationarity of {X;, i>>1} we have

& k
Cov (Z;X&(r-nﬂia ZlXur_nﬂi)
F= ’:

=Cov(3:X,s, LX),

(3.11)

Applying (3.5), (3.10), (3.11), and (2.1) to (3.9) we obtain

2 32 7 [Cov (S Zn, £2) —3Cov(Zu, )]

“2”1"2 2 [COV(m—UZZk I’ZEXk(r..xwm "sz llszk(r—l)h!u

ii=1 =1

m kb &
- m"‘ECov (k7! IZZIXk(T—l)ﬂ:i, k! /ZZ.:th(r—l)+ni) ]
= 8= =

——2IIZII‘°'E ((km)“COV(ZXm ZIXm) k"‘COV(EXm EX;“))

ii=1

=2l 2_21 (g:; (k) —a:;(k))

32"3"2 Z‘. (A"‘—Gij(k))—->0 as k—oo,

Note that by the assumption (i) of this theorem the above convergence

(3.12)

holds. Recall that o;;(n)<<A;; and {0;;(n)} is an increasing sequence.

Finally, by ¢*~1+ix— (2?/2) and mean zero we have
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Blexpim1/2 (k1Y) =1~ (1/2mk) E(ZY,)?
—1- (1/zm>E(§ Y,/ V)

~1—-LEG SX,a/ V)

—1—L BesaS./ vE
—]. _2‘”TE(l§2tSlu/\/ k)z

—_1—-L i Ed] (Xiai; (k) 2;)

2m iT1 =)

~1— (529 (3.13)
and
exp( —~—§—2A2‘) =exp( —~~§17;1——2A2‘ ) = ( 1 —-é%nﬁmz* ).. (3.14)
Since o;;(k)—A;; as k—oo (assumption (i) of this theorem)
%}—»A as k—oo, (3.15)
Applying (3.13), (3.14), and (3.15) to (III) we obtain
II?IEexp {im™1/2 (k1 zné Y)} —~exp( ——%XAA‘) | =0 as 2—co (3.16)

By combining (3.4), (3.12), and (3.16) we complete the proof.
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