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MONOTONICITY OF PERMANENTS OF CERTAIN
DOUBLY STOCHASTIC MATRICES

SEOK-ZUN SoNG

A nonnegative matrix is called doubly stochastic if all row sums and
column sums equal 1. The set of all n x n doubly stochastic matrices,
denoted by D.., forms a convex polytope with permutation matrices as
vertices [7]. We denote by I .. the n x n identity matrix, and by K" the
n x n matrix all of whose entries equal 1. One face of D" of special
interest is the face O(R,,) of derangement matrix R,,(=K..-1..). Let
oO(R..) denote the boundary of O(R,,). For this face tJ(R..), we have a
conjecture as follows;

"The minimum permanent on Q(R,,) is d..! (n-l)", where d" is the n-th

derangement number, and that it occurs uniquely at ~1-R,,",
n-

(Problem 3 in [3J and Conjecture 44 in [8J)
In this paper, we study the stronger version than this conjecture, that

is, the function

is strictly increasing in the interval O~A~l, where A is any Lixed

matrix on the boundary oD(R..) of O(R,,) and D,,= n~1 R.. for n~3.

PROPOSITION 1. For all AE.Q(R3), A:;t:D3, fA(A) is strictly increasing
in the interval O~A~1.

Proof. For arbitrary A = [l-
a

O
a ~ 1;a]

I-a 0
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EO(Rg), let A1=A1A+(1-Al)Dg and A2=A2A+(1-A2)Dg, where O~

Al<A2~1. Then per A 1=3A1
2(a- ~r+ ~. Therefore,

per Az-per A 1=3(a- ~ )\A22-A12) ~O,

where equality holds if and only if A=D::.

LEMMA 2. ([4J) If A is a nonnegative doubly stochastic matrix on
O(Rn) sufficiently close to Dn and A*Dn, then per A>per Dn. In other
words, the permanent function has a strict local minimum at Dn on Q(Rn).

THEOREM 3. If AEO(Rn) and A*Dn then these are equivalent;
(l) fA (A) is nondecreasing in the interval 0:::;; A~ 1.
(2) fA (i!) is strictly increasing in the interval 0~ A~ 1.

Proof. Being a polynomial in A, fA (it) cannot be a constant over a
subinterval of [0,1] without being a constant throughout. Therefore, if
fA(i!)=c over a subinterval [Al> A2J of [O,IJ, Al<A2' then fA{i!)=c over
all [0,1J. However, this contradicts Lemma 2.

LEMMA 4. Let AEQ(Rn) and A*Dn. Then there exists AoEoO(Rn)
and AoE(O, 1] such that A=AoAo+ (1-Ao)Dn. Furthermore, if lA/A) is
nondecreasing, so is lA (A) .

Proof. Let L (A) be the line segment through Dn and A intersecting
the boundary of Q(Rn) at A o. That is, if ast=min{a;i!i*j} and Ao=
1- (n-l)ast>O, then A o= (l/Ao)(A- (I-Ao)Dn) is a doubly stochastic
matrix with at least one zero except main diagonal, and

L(A) = {SIS=AAo+ (l-A)Dn, O~A~I}.

Clearly, A=AoAo+ (I-Ao)DnEL(A).
Furthermore, assume that f Ao(i!) = per (AAo+ (1- il) D,,) is nondecreasing

for 0~ il~1. Then we have

fA (A) =per(AA+ (1- il)Dn)
= per (A {i!oAo+(I - Ao) Dn) + (1- A) Dn).

Hence fA (A) is also nondecreasing.
Now, we pose a conjecture on O(Rn ) for n~4.
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CoNJECTURE M(D) : For all AEoO(R,,) , . fA (1) =per(lA+ (l-l)D..)
is nondecreasing in the interval 0~1~1.

CoROLLARY 5. If we assume the conjecture M(D) , then fA (1) is
nondecreasing for all AEO(R..).

Proof. Assume that the conjecture M(D) holds. By Lemma 4, for
arbitrary AEO(R,,) and A:;t:D", there is AoEoO(R..) and AoE (0, 1]
such that A=loAo+(l-lo)D". Since fAo(l) is nondecreasing by
assumption, we have fA (1) is also nondecreasing by Lemma 4.

CoROLLARY 6. If we assume the conjecture M(D) for n;E;3, then we
have the follO'Wings;

( i) D" is the minimizing matrix on OCR,,),
(H) For all AEO(R,,), fA'(!) ;E;O,
(Hi) For AEtJ(R,,), define 4'(A)=(R,,-A)/(n-2) and in general,

<}<"'+1) (A) =<}(4'<"') (A» by iteration. Then if AEQ(R,,) and Ai=D",
per A>per(<}<21<)(A», k=1,2, "',

(iv) For AEtJ(R,,), define 4'(A) = (R,,+A)/n and in general, 4'<"'+1>
(A) =4'(4'<.) (A» by iteration. Then if AEO(R,,) and A=i=D", per A>
per (4'(A».

Proof. (i) Using Corollary 5 and Theorem 3, we have fA (1) is
strictly increasing in interval O~A~l. Hence D .. is the minimizing
matrix on OCR,,).

(ii) By Corollary 5, we have fA'O)~O for 1E(O,!). But f/O) is
a polynomial in 1 and hence fA' (1) ~O.

(Hi) Now, we compute

4'(A) = (R.. -A)/(n-2)

=(1+ n~2 )D..+(- n~2 )A

and

Since A::j::.D.., fA(1) is strictly increasing in the interval O~A~1 by
Corollary 5 and Theorem 3. Hence
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per A=fA(1»fA( (n!2)2 )=per(qS<2l(A)).

Similarly, we have per A>per (qS<2kl (A)), for k=1,2, ....
(iv) Similar to the proof of (iii), using

sb(A) = ~A+(I- ~)D".

We remark that (i) is the Conjecture 44 in [8J.

LEMMA 7. ([2J) For A= (aij)E.[}", let 1: : [)"-t[},, be the transformation
defined by

(1:(A»ij= {aij per A(ilj)}jper A.

Then per A~per(AA+ (I-A)T:(A») for AE.[O, 1) and the equality holds
if and only if 1: (A) =A.

LEMMA 8. Let AEa[}(R,,). Suppose that, for AE.(O, 1), there exists l'
such that l <l' and

1: (lA + (1- A)D,,) =).'A +(I -l')D•.

Then fA(A) is strictly increasing in the interval O~l~I.

Proof. Since AEafJ(R,,) , there
(lA+ (1-1)D")ij= C1 -l)dij and
different each other because 1<l'.
A')D" are different. By Lemma 7,

exists aij=O for some i*j. Then
0'A + (I - A')D") ij= (1- A') dij are

Hence lA+ (1-).) D" and A'A +(1-

per(lA+ (I-A)D") < per (1: (lA+ (1-1)D,,»
= per(l'A+ (1-1')D,,).

Hence per(lA+C1-1)D") is strictly increasing in the interval O~l~1.

Assume 1<s, t. Let X denote an s-square matrix with variables Xij
=x(i*j), Xii=O, Yan sXt matrix with all entries equal to a variable
y, and Z a tXt matrix with variables %ij=z(i*j), Zii=O. Let

Note that, for nonnegative x, y and z, LE[}(Rs+!) if and only if



(*)
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(s-I)x+ty=sy+ (t- 1)z=1. We define fs,t=per L, gs,t=per L(I12),
hs,t=per L(Ils+t). Then we have

fs,t= (s- 1)x·gs,t+ty. hs,t

by expanding fs,t along the first row of L.

LEMMA 9. For all x, y and % such that per L*O, there exist x', y' and
z' such that T(L(x,y,%»=L(x',y',z').

Proof. It suffices to note that the (s+t-I) x (s+t-I) submatrix of
an entry in the block Y and that of the corresponding entry in the
block yt are transposes of each other and hence have the same per­
manent.

LEMMA 10. LetL(x,y,z)EQ(Rstt), I<s,t. Then there exist:<such
that L(x, y, z) =A(DsEBD,) + (1- :<)Ds+t.

Proof. Let n=s+t and :<=I-(n-I)y. Since L(x,y,z)EQ(Rn) and
(s-I)x+ty=sy+ (t-I)z= 1, we have (s-I)(x- y) = (I-ty) - (s-l)y
=1- (s+t-I)y=:< and (t-I) (z-y) = (I-sy) - (t- 1)y=I- (s+t-I)y
=A. Therefore,

(
:< I-A 1-:< A I-A)

A(DlBDt) + (I-).)Dn=L --1+--1' --1'-1-+ 1s- n- n- t- n-
=L(x, y, z).

THEOREM 11. Let A=DlJjDtEQ(Rn) and 1<s, t. If we assume that
gs,t>hs,t for L(x,y,z)=AA+(I-A)Ds+h then fA(A)=per(AA+O-A)
Ds+t) is strictly increasing in the interval 0;;;;; A;;;;; 1.

Proof. Assume s~t without loss of generality. Let n=s+t and AE
(0, 1]. Then it is readily verified that

J.(DlBDt) + (l-A)Ds+t=L(x, y, z),

Where x= (s- 1) +tA I-A (t- 1) +sA B L m
(s- 1) (n-I) , y= n-l ' z= (t-I) (n-I)' y em a

9, there exist x',y' and z' such that T(L(x,y,z»=L(x',y',z'). By
Lemma 10, there is A' such that L(x', y', z') =A'(Dl~BDt)+ (l-A')Dstt•

That is, "CA (D/BD,) +(1- A) Dn ) = A' (D/BDt) + (1 - A') Dn • Our result
would follow from Lemma 8 if A<:<'. Since A' satisfies the equality
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(r (L» 1,2= (L) 1,2 X per L(112) lper L from Lemma 7, we have A'l (s-I)
+ (1- A') I (n-I) = PI (s-l) + (1- A) I (n-l)} X (g.,';f., I) , that is

(s-I) +tA'
(s-l) (n-l)

(s-l)+tA X g.,1
(s-l)(n-l) f., I •.

(**)

Hence it suffices to show that g.,,>f.,I. Since (s-l)x+ty=l, we get
by (*) that

g.,,-/.,,= (1- (s-l)x) ·g.,I-ty·h.,t
=ty· (g., t- h",) >0

by assumption.

THEOREM 12. Let A=L(0, :' t~=~»)' where t~s~l. If we

assume g."<h.,,, then per (OA + (1-fJ)Do+t) is strictly increasing zn the
interval 0~0~1.

Proof. Since A=L(O, +, t(~=~) )=(- S~1 )X(D.EBD,)+(I+

s~1 )D,+t, OA+(1-0)D.+t=( (s~1)0 ) X (D,EBDt ) +(1+ O(S~1) )

D,+!. It remains to show that fBo.) is strictly decreasing in the interval

- s~1 ~A<O, where B=D.EBD,. By Lemma 9 and 10, there exists

A' such that t' (A (D,EBDt ) + (1- A) Dn ) = A' (D,(f)D,) + (1- A') Dn• Our result
would follow from Lemma 8 if A>A'• Since A' satisfies the equality
t'(A)12={a12 per AClI2)}/per A from Lemma 7, we have the equation
(**). Hence it suffices to show that g., t<I., t. Since (s-l)x+ty=l,
we get by (*) that

g.,t-1.,,= (1- (s-l)x)g.,t-ty·h"t
=ty· (g.,t-h.,,) <0

by assumption.

EXAMPLES 13. (1) For the condition g.">h,,, in Theorem 11, we
consider the matrix
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Then

g3,2-h3,2=2xy(z-y) + (2y+xz) (2y+xz-3xy)

= ;2 (613-12 +21+1»0

1+1 1-1 1+3.1for x= -4' y=-4-' z= 4 and .1E(O, 1]. Hence the con-

dition g.,t>h"t in Theorem 11 holds for the matrix L(x, y, z)E(,J(R3+2).
(2) For the condition g.,t<h"t in Theorem 12, we consider the matrix

L(O, +, t(~=~) )=[~t i]EO(RHt).

(1) If s=t>1, then we have that

_ t! (t-l)!
g"t-O<T x tt 1 =h"t.

(2) If s=t-1>1, then we have that

Hence we have that

(t-2)1
tt 2

(t-l) !
tt 1

t2-3t+3 and
2t(t-1)

[ (t-2)! J2 X [ (t-1)3_1 J>O
h"t-g"t= et 1 2(t-1)

for all t>2.
Therefore, the assumption

(
1 t-s)L 0, -t-' t(t-I) EtJ(RHt)

g., t<h"t holds for the

whenever s=t or s=t-1.

matrices
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