MONOTONICITY OF PERMANENTS OF CERTAIN DOUBLY STOCHASTIC MATRICES

SEOK-ZUN SONG

A nonnegative matrix is called *doubly stochastic* if all row sums and column sums equal 1. The set of all $n \times n$ doubly stochastic matrices, denoted by Ω_n , forms a convex polytope with permutation matrices as vertices [7]. We denote by I_n the $n \times n$ identity matrix, and by K_n the $n \times n$ matrix all of whose entries equal 1. One face of Ω_n of special interest is the face $\Omega(R_n)$ of derangement matrix $R_n(=K_n-I_n)$. Let $\partial \Omega(R_n)$ denote the boundary of $\Omega(R_n)$. For this face $\Omega(R_n)$, we have a conjecture as follows;

"The minimum permanent on $\Omega(R_n)$ is $d_n/(n-1)^n$, where d_n is the n-th derangement number, and that it occurs uniquely at $\frac{1}{n-1}R_n$ ".

(Problem 3 in [3] and Conjecture 44 in [8])

In this paper, we study the stronger version than this conjecture, that is, the function

$$f_A(\lambda) = \operatorname{per}(\lambda A + (1-\lambda)D_n)$$

is strictly increasing in the interval $0 \le \lambda \le 1$, where A is any fixed matrix on the boundary $\partial \Omega(R_n)$ of $\Omega(R_n)$ and $D_n = \frac{1}{n-1} R_n$ for $n \ge 3$.

PROPOSITION 1. For all $A \in \Omega(R_3)$, $A \neq D_3$, $f_A(\lambda)$ is strictly increasing in the interval $0 \leq \lambda \leq 1$.

Proof. For arbitrary
$$A = \begin{bmatrix} 0 & a & 1-a \\ 1-a & 0 & a \\ a & 1-a & 0 \end{bmatrix}$$

Received March 14, 1988.

 $\in \mathcal{Q}(R_3)$, let $A_1 = \lambda_1 A + (1 - \lambda_1) D_3$ and $A_2 = \lambda_2 A + (1 - \lambda_2) D_3$, where $0 \le \lambda_1 < \lambda_2 \le 1$. Then per $A_1 = 3\lambda_1^2 \left(a - \frac{1}{2}\right)^2 + \frac{1}{4}$. Therefore,

per
$$A_2$$
-per $A_1=3\left(a-\frac{1}{2}\right)^2(\lambda_2^2-\lambda_1^2)\geq 0$,

where equality holds if and only if $A=D_3$.

LEMMA 2. ([4]) If A is a nonnegative doubly stochastic matrix on $\Omega(R_n)$ sufficiently close to D_n and $A \neq D_n$, then per $A > per D_n$. In other words, the permanent function has a strict local minimum at D_n on $\Omega(R_n)$.

THEOREM 3. If $A \in \Omega(R_n)$ and $A \neq D_n$ then these are equivalent;

- (1) $f_A(\lambda)$ is nondecreasing in the interval $0 \le \lambda \le 1$.
- (2) $f_A(\lambda)$ is strictly increasing in the interval $0 \le \lambda \le 1$.

Proof. Being a polynomial in λ , $f_A(\lambda)$ cannot be a constant over a subinterval of [0,1] without being a constant throughout. Therefore, if $f_A(\lambda) = c$ over a subinterval $[\lambda_1, \lambda_2]$ of [0,1], $\lambda_1 < \lambda_2$, then $f_A(\lambda) = c$ over all [0,1]. However, this contradicts Lemma 2.

LEMMA 4. Let $A \in \Omega(R_n)$ and $A \neq D_n$. Then there exists $A_0 \in \partial \Omega(R_n)$ and $\lambda_0 \in (0, 1]$ such that $A = \lambda_0 A_0 + (1 - \lambda_0) D_n$. Furthermore, if $f_{A_0}(\lambda)$ is nondecreasing, so is $f_A(\lambda)$.

Proof. Let L(A) be the line segment through D_n and A intersecting the boundary of $\Omega(R_n)$ at A_0 . That is, if $a_{st} = \min\{a_{ij} | i \neq j\}$ and $\lambda_0 = 1 - (n-1)a_{st} > 0$, then $A_0 = (1/\lambda_0)(A - (1-\lambda_0)D_n)$ is a doubly stochastic matrix with at least one zero except main diagonal, and

$$L(A) = \{S | S = \lambda A_0 + (1 - \lambda) D_n, 0 \le \lambda \le 1\}.$$

Clearly, $A = \lambda_0 A_0 + (1 - \lambda_0) D_n \in L(A)$.

Furthermore, assume that $f_{A_0}(\lambda) = \operatorname{per}(\lambda A_0 + (1-\lambda)D_n)$ is nondecreasing for $0 \le \lambda \le 1$. Then we have

$$f_A(\lambda) = \operatorname{per}(\lambda A + (1-\lambda)D_n)$$

= $\operatorname{per}(\lambda(\lambda_0 A_0 + (1-\lambda_0)D_n) + (1-\lambda)D_n).$

Hence $f_A(\lambda)$ is also nondecreasing.

Now, we pose a conjecture on $\Omega(R_n)$ for $n \ge 4$.

CONJECTURE M(D): For all $A \in \partial \Omega(R_n)$, $f_A(\lambda) = \operatorname{per}(\lambda A + (1-\lambda)D_n)$ is nondecreasing in the interval $0 \le \lambda \le 1$.

COROLLARY 5. If we assume the conjecture M(D), then $f_A(\lambda)$ is nondecreasing for all $A \in \mathcal{Q}(R_n)$.

Proof. Assume that the conjecture M(D) holds. By Lemma 4, for arbitrary $A \in \mathcal{Q}(R_n)$ and $A \neq D_n$, there is $A_0 \in \partial \mathcal{Q}(R_n)$ and $\lambda_0 \in (0, 1]$ such that $A = \lambda_0 A_0 + (1 - \lambda_0) D_n$. Since $f_{A_0}(\lambda)$ is nondecreasing by assumption, we have $f_A(\lambda)$ is also nondecreasing by Lemma 4.

COROLLARY 6. If we assume the conjecture M(D) for $n \ge 3$, then we have the followings;

- (i) D_n is the minimizing matrix on $\Omega(R_n)$,
- (ii) For all $A \in \Omega(R_n)$, $f_A'(1) \ge 0$,
- (iii) For $A \in \mathcal{Q}(R_n)$, define $\phi(A) = (R_n A)/(n-2)$ and in general, $\phi^{(m+1)}(A) = \phi(\phi^{(m)}(A))$ by iteration. Then if $A \in \mathcal{Q}(R_n)$ and $A \neq D_n$, per $A > \text{per}(\phi^{(2k)}(A))$, $k=1,2,\cdots$,
- (iv) For $A \in \Omega(R_n)$, define $\psi(A) = (R_n + A)/n$ and in general, $\psi^{(m+1)}(A) = \psi(\psi^{(m)}(A))$ by iteration. Then if $A \in \Omega(R_n)$ and $A \neq D_n$, per $A > \text{per } (\psi(A))$.
- *Proof.* (i) Using Corollary 5 and Theorem 3, we have $f_A(\lambda)$ is strictly increasing in interval $0 \le \lambda \le 1$. Hence D_n is the minimizing matrix on $\Omega(R_n)$.
- (ii) By Corollary 5, we have $f_A'(\lambda) \ge 0$ for $\lambda \in (0, 1)$. But $f_A'(\lambda)$ is a polynomial in λ and hence $f_A'(1) \ge 0$.
 - (iii) Now, we compute

$$\phi(A) = (R_n - A)/(n-2) = \left(1 + \frac{1}{n-2}\right)D_n + \left(-\frac{1}{n-2}\right)A$$

and

$$\phi^{2}(A) = \left(1 - \frac{1}{(n-2)^{2}}\right)D_{n} + \frac{1}{(n-2)^{2}}A.$$

Since $A \neq D_n$, $f_A(\lambda)$ is strictly increasing in the interval $0 \leq \lambda \leq 1$ by Corollary 5 and Theorem 3. Hence

per
$$A=f_A(1)>f_A(\frac{1}{(n-2)^2})=per(\phi^{(2)}(A))$$
.

Similarly, we have per $A > per(\phi^{(2k)}(A))$, for $k=1,2,\cdots$.

(iv) Similar to the proof of (iii), using

$$\phi(A) = \frac{1}{n}A + \left(1 - \frac{1}{n}\right)D_n.$$

We remark that (i) is the Conjecture 44 in [8].

LEMMA 7. ([2]) For $A=(a_{ij})\in\Omega_n$, let $\tau:\Omega_n\to\Omega_n$ be the transformation defined by

$$(\tau(A))_{ij} = \{a_{ij} \text{ per } A(i|j)\}/\text{per } A.$$

Then per $A \leq \operatorname{per}(\lambda A + (1-\lambda)\tau(A))$ for $\lambda \in [0,1)$ and the equality holds if and only if $\tau(A) = A$.

LEMMA 8. Let $A \in \partial \Omega(R_n)$. Suppose that, for $\lambda \in (0,1)$, there exists λ' such that $\lambda < \lambda'$ and

$$\tau(\lambda A + (1-\lambda)D_n) = \lambda' A + (1-\lambda')D_n.$$

Then $f_A(\lambda)$ is strictly increasing in the interval $0 \le \lambda \le 1$.

Proof. Since $A \in \partial \Omega(R_n)$, there exists $a_{ij} = 0$ for some $i \neq j$. Then $(\lambda A + (1-\lambda)D_n)_{ij} = (1-\lambda)d_{ij}$ and $(\lambda'A + (1-\lambda')D_n)_{ij} = (1-\lambda')d_{ij}$ are different each other because $\lambda < \lambda'$. Hence $\lambda A + (1-\lambda)D_n$ and $\lambda'A + (1-\lambda')D_n$ are different. By Lemma 7,

$$per(\lambda A + (1-\lambda)D_n) < per(\tau(\lambda A + (1-\lambda)D_n))$$

= per(\delta'A + (1-\delta')D_n).

Hence per $(\lambda A + (1-\lambda)D_n)$ is strictly increasing in the interval $0 \le \lambda \le 1$.

Assume $1 \le s$, t. Let X denote an s-square matrix with variables $x_{ij} = x(i \ne j)$, $x_{ii} = 0$, Y an $s \times t$ matrix with all entries equal to a variable y, and Z a $t \times t$ matrix with variables $z_{ij} = z(i \ne j)$, $z_{ii} = 0$. Let

$$L=L(x, y, z)=\begin{bmatrix} X & Y \\ Y^t & Z \end{bmatrix}$$
.

Note that, for nonnegative x, y and $z, L \in \mathcal{Q}(R_{s+t})$ if and only if

(s-1)x+ty=sy+(t-1)z=1. We define $f_{s,t}=\text{per }L$, $g_{s,t}=\text{per }L(1|2)$, $h_{s,t}=\text{per }L(1|s+t)$. Then we have

$$f_{s,t} = (s-1)x \cdot g_{s,t} + ty \cdot h_{s,t} \tag{*}$$

by expanding $f_{s,t}$ along the first row of L.

LEMMA 9. For all x, y and z such that per $L \neq 0$, there exist x', y' and z' such that $\tau(L(x, y, z)) = L(x', y', z')$.

Proof. It suffices to note that the $(s+t-1) \times (s+t-1)$ submatrix of an entry in the block Y and that of the corresponding entry in the block Y' are transposes of each other and hence have the same permanent.

LEMMA 10. Let $L(x, y, z) \in \Omega(R_{s+t})$, 1 < s, t. Then there exist λ such that $L(x, y, z) = \lambda(D_s \oplus D_t) + (1 - \lambda)D_{s+t}$.

Proof. Let n=s+t and $\lambda=1-(n-1)y$. Since $L(x, y, z) \in Q(R_n)$ and (s-1)x+ty=sy+(t-1)z=1, we have $(s-1)(x-y)=(1-ty)-(s-1)y=1-(s+t-1)y=\lambda$ and $(t-1)(z-y)=(1-sy)-(t-1)y=1-(s+t-1)y=\lambda$. Therefore,

$$\lambda(D_s \oplus D_t) + (1-\lambda)D_n = L\left(\frac{\lambda}{s-1} + \frac{1-\lambda}{n-1}, \frac{1-\lambda}{n-1}, \frac{\lambda}{t-1} + \frac{1-\lambda}{n-1}\right)$$

= $L(x, y, z)$.

THEOREM 11. Let $A=D_s \oplus D_t \in \Omega(R_n)$ and 1 < s, t. If we assume that $g_{s,t} > h_{s,t}$ for $L(x, y, z) = \lambda A + (1-\lambda)D_{s+t}$, then $f_A(\lambda) = \operatorname{per}(\lambda A + (1-\lambda)D_{s+t})$ is strictly increasing in the interval $0 \le \lambda \le 1$.

Proof. Assume $s \ge t$ without loss of generality. Let n = s + t and $\lambda \in (0, 1]$. Then it is readily verified that

$$\lambda(D_s \oplus D_t) + (1-\lambda)D_{s+t} = L(x, y, z),$$

where $x = \frac{(s-1)+t\lambda}{(s-1)(n-1)}$, $y = \frac{1-\lambda}{n-1}$, $z = \frac{(t-1)+s\lambda}{(t-1)(n-1)}$. By Lemma 9, there exist x', y' and z' such that $\tau(L(x,y,z)) = L(x',y',z')$. By Lemma 10, there is λ' such that $L(x',y',z') = \lambda'(D_s \oplus D_t) + (1-\lambda')D_{s+t}$. That is, $\tau(\lambda(D_s \oplus D_t) + (1-\lambda)D_n) = \lambda'(D_s \oplus D_t) + (1-\lambda')D_n$. Our result would follow from Lemma 8 if $\lambda < \lambda'$. Since λ' satisfies the equality

 $(\tau(L))_{1,2} = (L)_{1,2} \times \text{per } L(1|2)/\text{per } L \text{ from Lemma 7, we have } \lambda'/(s-1) + (1-\lambda')/(n-1) = {\lambda/(s-1) + (1-\lambda)/(n-1)} \times (g_{s,t}/f_{s,t}), \text{ that is}$

$$\frac{(s-1)+t\lambda'}{(s-1)(n-1)} = \frac{(s-1)+t\lambda}{(s-1)(n-1)} \times \frac{g_{s,t}}{f_{s,t}}.$$
 (**)

Hence it suffices to show that $g_{s,t} > f_{s,t}$. Since (s-1)x+ty=1, we get by (*) that

$$g_{s,t} - f_{s,t} = (1 - (s-1)x) \cdot g_{s,t} - ty \cdot h_{s,t}$$

= $ty \cdot (g_{s,t} - h_{s,t}) > 0$

by assumption.

THEOREM 12. Let $A=L\left(0, \frac{1}{t}, \frac{t-s}{t(t-1)}\right)$, where $t \ge s \ge 1$. If we assume $g_{s,t} < h_{s,t}$, then $per(\theta A + (1-\theta)D_{s+t})$ is strictly increasing in the interval $0 \le \theta \le 1$.

Proof. Since $A=L\left(0,\frac{1}{t},\frac{t-s}{t(t-1)}\right)=\left(-\frac{s-1}{t}\right)\times (D_s\oplus D_t)+\left(1+\frac{s-1}{t}\right)D_{s+t}$, $\theta A+(1-\theta)D_{s+t}=\left(-\frac{(s-1)\theta}{t}\right)\times (D_s\oplus D_t)+\left(1+\frac{\theta(s-1)}{t}\right)D_{s+t}$. It remains to show that $f_B(\lambda)$ is strictly decreasing in the interval $-\frac{s-1}{t}\leq \lambda<0$, where $B=D_s\oplus D_t$. By Lemma 9 and 10, there exists λ' such that $\tau(\lambda(D_s\oplus D_t)+(1-\lambda)D_n)=\lambda'(D_s\oplus D_t)+(1-\lambda')D_n$. Our result would follow from Lemma 8 if $\lambda>\lambda'$. Since λ' satisfies the equality $\tau(A)_{12}=\{a_{12} \text{ per } A(1|2)\}/\text{per } A$ from Lemma 7, we have the equation (**). Hence it suffices to show that $g_{s,t}< f_{s,t}$. Since (s-1)x+ty=1, we get by (*) that

$$g_{s,t}-f_{s,t}=(1-(s-1)x)g_{s,t}-ty\cdot h_{s,t}$$

= $ty\cdot (g_{s,t}-h_{s,t})<0$

by assumption.

EXAMPLES 13. (1) For the condition $g_{s,t} > h_{s,t}$ in Theorem 11, we consider the matrix

$$L(x, y, z) = \begin{bmatrix} X & Y \\ Y^t & Z \end{bmatrix} \in \mathcal{Q}(R_{3+2}).$$

Then

$$g_{3,2}-h_{3,2}=2xy^{2}(x-y)+(2y^{2}+xz)(2y^{2}+xz-3xy)$$

$$=\frac{\lambda}{32}(6\lambda^{3}-\lambda^{2}+2\lambda+1)>0$$

for $x=\frac{1+\lambda}{4}$, $y=\frac{1-\lambda}{4}$, $z=\frac{1+3\lambda}{4}$ and $\lambda \in (0,1]$. Hence the condition $g_{s,t} > h_{s,t}$ in Theorem 11 holds for the matrix $L(x, y, z) \in \Omega(R_{3+2})$.

(2) For the condition $g_{s,t} < h_{s,t}$ in Theorem 12, we consider the matrix

$$L(0, \frac{1}{t}, \frac{t-s}{t(t-1)}) = \begin{bmatrix} 0 & Y \\ Y^t & Z \end{bmatrix} \in \Omega(R_{s+t}).$$

(1) If s=t>1, then we have that

$$g_{s,t}=0<\frac{t!}{t^t}\times\frac{(t-1)!}{t^{t-1}}=h_{s,t}.$$

(2) If s=t-1>1, then we have that

$$g_{s,t} = \left[\frac{(t-2)!}{t^{t-2}}\right]^2 \times \frac{t^2 - 3t + 3}{2t(t-1)}$$
 and $h_{s,t} = \left[\frac{(t-1)!}{t^{t-1}}\right]^2$.

Hence we have that

$$h_{s,t}-g_{s,t}=\left[\frac{(t-2)!}{t^{t-1}}\right]^2\times\left[\frac{(t-1)^3-1}{2(t-1)}\right]>0$$

for all t>2.

Therefore, the assumption $g_{s,t} < h_{s,t}$ holds for the matrices $L\left(0, \frac{1}{t}, \frac{t-s}{t(t-1)}\right) \in \Omega(R_{s+t})$ whenever s=t or s=t-1.

References

- 1. R.B. Bapat, A stronger form of the Egorychev-Falikman theorem on permanents, Linear Algebra Appl. 63 (1984), 95-100.
- 2. L.E. Baum and G.R. Sell, Growth transformations for functions on manifolds, Pacific J. Math. 27 (1968), 211-227.

- 3. R.A. Brualdi, An interesting face of the polytope of doubly stochastic matrices, Lin. Multilin. Alg. 15 (1985), 5-18.
- 4. S.G. Hwang, On the local minimum permanent over the face of derangement matrix, (Private contact).
- 5. S.G. Hwang, The monotonicity of and the Dokovic conjectures on permanents of doubly stochastic matrices, Lin. Alg. Appl. 79 (1986), 127-151.
- 6. K.W. Lih and E.T. Wang, Monotonicity conjecture on permanents of doubly stochastic matrices, Proc. Amer. Math. Soc. 82 (1981), 173-178.
- 7. H. Minc, *Permanents*, Encyclopedia of Mathematics and its Applications, Vol. 6, Addison-Wesley, 1978.
- 8. H. Minc, Theory of permanents 1982~1985, Lin. Multilin. Alg. 21(2) (1987), 109-148.
- 9. Seok-Zun Song, Minimum permanents on certain faces of the polytope of doubly stochastic matrices, Bull. Korean Math. Soc. 25 (1988), No. 1, 35-49.

Cheju National University Cheju 690-121, Korea