REGULAR NEAR-RING MODULES

Y.S. PARK, Y. CHAE AND C.K. BAE

Introduction

By analogy with the concept of a regular module introduced by Zelmanowitz[6], in this paper we introduce the concept of a regular near-ring module. If N is a near-ring then an N-module M is called regular if for each $m \in M$ there exists $f \in \text{Hom}_N(M, N)$ such that m = (fm)m. It follows that any regular near-ring may be regarded as a regular N-module.

The purpose of this paper is to investigate some properties of regular near-ring modules and to characterize regularity of both the endomorphism semigroup $\operatorname{End}_N(M)$ of a regular N-module M and the center of $\operatorname{End}_N(M)$. Finally, we show that if R is a ring with identity and M is a unital R-module, then the corresponding centralizer near-ring is strictly semiprime. The most results in this paper are to generalize the corresponding ones in [6].

Throughout this paper, N stand for a right near-ring in which n0=0 for each $n \in \mathbb{N}$. For the basic terminology and notation we refer to Pilz [4].

THEOREM 1. A cyclic regular N-module is isomorphic to an N-subgroup of N generated by an idempotent.

Proof. If m is a generator of a cyclic regular N-module M, then $m=(fm)m \in Nm$ for some $f \in \text{Hom}_N(M,N)$. It follows that M=Nm. Suppose that $f(nm)=f(n_1m)$ for $n, n_1 \in N$. Then $nm=n((fm)m)=f(nm)m=f(n_1m)m=n_1(f(m)m)=n_1m$. Therefore f is monomorphism. Since fM=f(Nm)=N(fm) and fm is an idempotent element of N, we

Received March 10, 1988.

The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, 1987.

have $M \cong N(fm)$.

An N-module M is called the semi-direct sum of its N-subgroups A and B (denoted by M=A+B) if A is a submodule of M, M=A+B and $A \cap B = \{0\}$. Here A is called a semi-direct summand of M.

LEMMA 2. Let M be an N-module, $f \in \text{Hom}_N(M, N)$ and $m \in M$. Then there exists $f_m \in \text{End}_N(M)$ such that $f_m(m') = (fm')m$ for each $m' \in M$.

Proof. It is obvious.

THEOREM 3. Let M be a regular N-module and A a cyclic N-subgroup of M. Then there exists a submodule B of M such that M=A+B.

Proof. Let A be a cyclic N-subgroup of M. Then there exists $m \in M$ such that A = Nm. Choose $f \in \operatorname{Hom}_N(M, N)$ with m = (fm)m. Let m' be any element of M. Then, by Lemma 2, there is $f_m \in \operatorname{End}_N(M)$ such that $f_m(m') = (fm')m$. Since f_m is an idempotent in $\operatorname{End}_N(M)$, $m' = f_m m' + (m' - f_m m') \in Nm + \operatorname{Ker} f_m$. It is easy to show that $Nm \cap \operatorname{Ker} f_m = \{0\}$. Hence $M = A + \operatorname{Ker} f_m$.

THEOREM 4. Let M be an N-module. Then for each $f \in \text{End}_N(M)$, the following statements are equivalent.

- (a) There exists $g \in \text{End}_N(M)$ such that fgf = f.
- (b) There exists an N-subgroup M_1 and an N-submodule M_2 such that $\text{Ker } f + M_1 = M$ and $\text{Im } f + M_2 = M$.

Proof. (a) \Rightarrow (b). Obvious.

(b) \Rightarrow (a). Assume (b) holds. Then there exists $g': \text{Im } f \rightarrow M$ such that fg'y=y for all $y \in \text{Im } f$, that is, fg'fx=fx for all $x \in M$. But $M=\text{Im } f+M_2$ for some N-submodule M_2 , so we can extend g' on M by taking g=0 on the complementary of M_2 . Hence for any $x \in M$, fgfx=fx. Thus fgf=f.

REMARK 5. $\operatorname{End}_N(M)$ is not always a near-ring under pointwise addition and composition. But it is a semigroup under the composition. Hence we obtained a characterization of regularity of the endomorphism semigroup $\operatorname{End}_N(M)$.

THEOREM 6. Let M be an N-module and let $\alpha \in \text{Center of End}_N(M)$. Then the following statements are equivalent.

- (a) There exists $\beta \in \text{Center of End}_N(M)$ such that $\alpha \beta \alpha = \alpha$.
- (b) $M = \alpha M + \text{Ker } \alpha$.

Proof. (a) \Rightarrow (b). Suppose that such α , β exist. Let $\eta = \alpha\beta = \beta\alpha$. Then $\eta^2 = \eta$ and $\alpha M = \eta M$. It follows that Ker $\alpha = \text{Ker } \eta$. Hence we have $M = \eta M + \text{Ker } \eta$.

(b) \Rightarrow (a). Suppose that $\alpha \in \text{Center}$ of $\text{End}_N(M)$ and $M = \alpha M + \text{Ker } \alpha$. Given $m \in M$ write $m = \alpha n + k$ with $n \in M$ and $k \in \text{Ker } \alpha$, and in turn write $n = \alpha n_1 + k_1$ with $n_1 \in M$ and $k_1 \in \text{Ker } \alpha$. Then $\alpha m = \alpha^2 (\alpha n_1)$. Let $x_m = \alpha n_1$. It follows that x_m is the unique element of αM such that $\alpha m = \alpha^2 x_m$. We can easily show that $x_{nm} = n x_m$, $x_{m+m_1} = x_m + x_{m_1}$, $x_{rm} = r x_m$ for any $m, m_1 \in M$, $n \in N$ and $r \in \text{End}_N(M)$.

Define $\beta \in \operatorname{End}_N(M)$ by $\beta m = x_m$ for each $m \in M$. It follows that $\alpha \beta \alpha = \alpha$ and $\beta \in \operatorname{Center}$ of $\operatorname{End}_N(M)$.

THEOREM 7. Let M be a regular N-module. Then the Center of End_N (M) is a regular semigroup.

Proof. Let $\alpha \in \text{Center of End}_N(M)$. For any $m \in M$, choose $f \in \text{Hom}_N(M, N)$ such that $\alpha m = (f(\alpha m))\alpha m$. Since $\alpha m = \alpha^2 f_m m$, we have $m = \alpha(f_m m) + (m - \alpha(f_m m))$. Hence $M = \alpha M + \text{Ker } \alpha$.

Moreover, $\alpha M \cap \text{Ker } \alpha = 0$. Thus $M = \alpha M + \text{Ker } \alpha$. It follows from Theorem 6 that $\text{End}_N(M)$ is a regular semigroup.

Due to Oswald[3], we say that a near-ring N is strictly semiprime if $A^2 = \{0\}$ implies $A = \{0\}$ where A is an N-subgroup of N.

LEMMA 8 ([3]). If N has the property that $xNx = \{0\}$ implies x = 0, then N is strictly semiprime.

Let R be a ring with identity and M a unital R-module. The corresponding centralizer near-ring is $C(R;M) = \{f : M \rightarrow M | f(rm) = r(fm) \}$ for all $r \in R$, $m \in M$ ([2]).

THEOREM 9. Let R be a ring with identity and $_RM$ a regular R-module. Then C(R;M) is strictly semiprime.

Proof. Let $\alpha(\neq 0) \in C(R; M)$. Then there exists $m \in M$ such that

 $\alpha m \neq 0$. Since M is regular, we have an $f \in \operatorname{Hom}_R(M, R)$ with $\alpha m = (f(\alpha m))\alpha m$. It follows that $\alpha m = (\alpha f_m \alpha) m$. Hence $0 \neq \alpha f_m \alpha \in \alpha C(R; M)\alpha$. It follows from Lemma 9 that C(R; M) is strictly semiprime.

COROLLARY 10. Let R be a ring with identity and $_RM$ a regular R-module. Then C(R;M) has no nonzero nilpotent N-subgroup.

Proof. Combining Theorem 10 and Theorem 1 of [3], it is immediate.

References

- 1. J.M. Howie, An introduction to semigroup theory, Academic Press, 1976.
- 2. C.J. Maxson and K.C. Smith, Centralizer near-rings that are endomorphism rings, Proc. A.M.S. 80 (1980) 189-195.
- 3. A. Oswald, Conditions on near-rings which imply that nil N-subgroups are nilpotent, Proc. of the Edinburgh Math. Soc. 20 (1977) 301-305.
- 4. G. Pilz, Near-rings, North Holland, New York, 1977.
- R.J. Roth, The structure of near-rings and near-ring modules, Doctoral dissertation, Duke University, 1962.
- 6. J. Zelmanowitz, Regular modules, Trans. A.M.S. 163 (1972) 341-354.

Kyungpook University Taegu 702-701, Korea and Yeungnam University Kyungsan 713-800, Korea