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REGULAR NEAR-RING MODULES

Y.S. Park, Y. Cuar anp C.K. Bae

Introduction

By analogy with the concept of a regular module introduced by
Zelmanowitz[6], in this paper we introduce the concept of a regular
near-ring module. If N is a near-ring then an N-module M is called
regular if for each m&M there exists f&Homy(M, N) such that m=
(fm)m, It follows that any regular near-ring may be regarded as a
regular N-module.

The purpose of this paper is to investigate some properties of regular
near-ring modules and to characterize regularity of both the endomorphism
semigroup Endy(M) of a regular N-module M and the center of Endy
(M). Finally, we show that if R is a ring with identity and M is a
unital R-module, then the corresponding centralizer near-ring is strictly
semiprime. The most results in this paper are to generalize the corre-
sponding ones in [6].

Throughout this paper, N stand for a right near-ring in which 20=0
for each =N, For the basic terminology and notation we refer to Pilz

[41.

THEOREM 1. A cyclic regular N-module is isomorphic to an N-subgroup
of N generated by an idempotent.

Proof. If m is a generator of a cyclic regular N-module M, then
m= (fm)m=Nm for some f<=Homy(M,N). It follows that M=Nm.
Suppose that f(nm)=f(nym) for n,nc<N. Then nm=n((fm)m)=
Fnm)m=f(nym)m=n,( f(m)m)=n,m, Therefore f is monomorphism.
Since fM=f(Nm)=N(fm) and fm is an idempotent element of N, we
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have MZ=N(fm).

An N-module M is called the semi-direct sum of its N-subgroups A

and B (denoted by M=AYB) if A is a submodule of M, M=A+B
and A(\B={0}. Here A is called a semi-direct summand of M.,

LEMMA 2. Let M be an N-module, f=Homy(M, N) and m&M. Then
there exists fnEndy(M) such that f.(m’')=(fm')m for each m' &M,

Proof. It is obvious.

THEOREM 3. Let M be a regular N-module and A a cyclic N-subgroup
of M. Then there exists a submodule B of M such that M=A1B.

Proof. Let A be a cyclic N-subgroup of M. Then there exists m=M
such that A=Nm, Choose f&Homy(M, N) with m=(fm)m. Let m’ be
any element of M, Then, by Lemma 2, there is f.&Endy(M) such
that f.(m’)={(fm')m. Since f. is an idempotent in Endy(M), m'=
Sam’ + (' — fum’)ENm+Ker fu. It is easy to show that Nm(\Ker fa

—={0}. Hence M=A+Ker fa.

THEOREM 4. Let M be an N-module. Then for each f=Endy(M),
the following statements are equivalent.

(a) There exists g=Endy(M) such that fgf=f.

(b) There exists an N-subgroup M, and an N-submodule M, such thai

Ker f+M,=M and Im f+M,=M.

Proof. (a)=>(b). Obvious.

(b)=>(a). Assume (b) holds. Then there exists g’ : Im f—M such
that fg’y=y for all y=Im f, that is, fg'fa=fx for all z&M, But
M=Im f -]—Mz for some N-submodule M, so we can extend g’ on M
by taking g=0 on the complementary of M,. Hence for any z&=M,

fefx=fx. Thus fgf=f.

REMARK 5. Endy(M) is not always a near-ring under pointwise
addition and composition. But it is a semigroup under the composition.
Hence we obtained a characterization of regularity of the endomorphism
semigroup Endy(M).
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THEOREM 6. Let M be an N-module and let a=Center of Endy(M).
Then the following statements are equivalent.
(a) There exists p=Center of Endy(M) such that apa=a.

(b) M=aM+Ker a.

Proof. (a)=>(b). Suppose that such a, 8 exist. Let p=af=pa. Then
p’=np and aM=yM, It follows that Ker a=Ker 5. Hence we have M
=yM +Ker 7.

(b)=>(a). Suppose that a=Center of Endy(M) and M=aM+Ker a.
Given m&M write m=an+k with a&M and k&Ker a, and in turn
write n=an,+k, with n,&M and k,&Ker a. Then am=a?*(an,). Let
zn=an,, It follows that z, is the unique element of aM such that am=
a’z,. We can easily show that Lun=n%w, Zwim,=ZTutTu, Tm=rz, for
any m, my&M, n=N aud r=Eady(M).

Define S=Endy(M) by pm==z, for each m&M, It follows that afa
=q and f=Center of Endy(M).

THEOREM 7, Let M be a regular N-module. Then the Center of Endy
(M) is a regular semigroup.

Proof. Let ac=Center of Endy(M), For any m&M, choose f&Homy
(M, N) such that am=(f(am))am. Since am=a’f,m, we have m=
a(fum)+ (m—a(fum))., Hence M=aM+Ker a,

Moreover, aM(\Ker a=0. Thus M=aM+Ker a, It follows from
Theorem 6 that Endy(M) is a regular semigroup.

Due to Oswald[3], we say that a near-ring N is strictly semiprime if
A?={0} implies A== {0} where A is an N-subgroup of N,

LEMMA 8 ([3]). If N has the property that xNz= {0} implies x=0,
then N is strictly semiprime.

Let R be a ring with identity and M a unital R-module. The corre-
sponding centralizer near-ring is C(R;M)={f: M—M|f(rm)=r(fm)
for all r&=R, me=M} ([2]).

THEOREM 9. Let R be a ring with identity and xM a regular R—module.
Then C(R; M) is strictly semiprime.

Proof. Let a(#0)&C(R;M). Then there exists m&M such that
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am=7#0. Since M is regular, we have an f&Homgz(M,R) with am=
(f(am))am. It follows that am= (af.a)m. Hence 0Zafra=aC(R;M)a,
It follows from Lemma 9 that C(R;M) is strictly semiprime.

COROLLARY 10. Let R be a ring with identity and M a regular
R-module. Then C(R; M) has no nonzero nilpotent N-subgroup.

Proof. Combining Theorem 10 and Theorem 1 of [3], it is immediate.
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