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ON PREORDERINGS OF HIGHER LEVEL

Dae Yeon Parx

1. Introduction

Lam investigated some properties on Krull valuation which is com-
patible with a preordering of a field [9]. Furthermore he showed many
results on preorderings and its related topics on the Henselization
(Fy,v)) of a valuated field (F,v). Especially the concept of preordering
was developed to higher level one and many results which held in the
case of preordering were generalized to those of higher level preordering
by E. Becker [4]. We continually proceed to find some properties that
are related with higher level preordering.

2. Preliminaries

A subset P of a field F is called a preordering of level 22 (n is a
natural number, char F=0) if it satisfies the following conditions [2].

(1) P+PCP (2) P-PCP

(3) F*CP (4) —1&P
For any abelian group G, we write G*=Hom (G, ¢) where = {{&C|{"=1
for some r&N}. Let F=F— {0}. X&F* is called a signature of F if
Ker 1 is additively closed [3,4]. The subset of signatures of F* is
denoted by SGN(F).

If v: F—I is a Krull valuation with the ordered abelian group written
multiplicatively, we denote the valuation ring of v by A, the maximal
ideal of A by .#, the group of units of A by U. we shall often write
(v, A, A4, T, ). For a valuated field (F,v), T denotes the images of
T A in residue class field F=A/_#. x&SGN(F) is said to be compatible
with a wvaluation, written v~ if (1+.#)CKer X. Let T be a
preordering of level 22 and X;= X&SGN(F) : x|;=1}. The set of

valuations which are compatible with X for some X<=X; is denoted by
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2(T) [41.
3. Preorderings of Higher Level on an Henselian Field

DEFINITION 3.1. Let T be a preordering of level 22 and v be a Krull
valuation on a field F. v&=2*(T) means v~X for all X&SGN(F)
satisfying 2(T)=1 (v~X for all x&X7).

PROPOSITION 3.2. Let (v, A, A, I, ) be a valuation on a field F
and T be a preordering of level 2n. Then

1) ve@*(T) if and only if 1+ #CT

(2) v=Q(T) if and only if T is a preordering of level 2n if and only
if W+ AN (=T)=9.

Proof. (1) By Becker [4], T= ﬂx Ker(X) where T is a preordering
1€Xp

of level 2n. v&@*(T) iff v~x for any 1&=Xr iff 1+ 4 CKer(¥) for
any 1&Xy iff 14 .#C fl Ker(x)=T.
XE T

(2) Suppose v&=R(T). By Becker [4], T is a preordering of level
2n. Suppose T is a preordering of level 2n. Then we have — T&T,
Hence (—T)N (1 +.#)=¢. Otherwise ] +m=—¢ implies t=—1—mcA
and —T=i<T, it is absurd. Suppose (—T)N(1+.#)=¢. Then
clearly — T&T and T is a preordering of level 22 : Let #,, {,&T. Then
4, 5L,=TNUCA, Assume &+t 4. Since 4+i,=m, t,=—t,+m=
L(—1+m/t), ti/t,=—1+m/t,&A and §/t,=—1+1,"'mE—1+ A CA
so —1&T. It is absurd. Hence ¢, +£,CUNTCA and f,+7,&T. Let
Fo.TCF*TCT and T is closed under multiplication. So we have T
is a preordering of level 2#. Suppose T is a preordering of level 22,
Since T is a preordering of level 2n by hypothesis, we have v&=02(T)
by Becker [4]. Therefore we proved the proposition.

Let v be a valuation on a field F, T be a preordering of level 22 and
Q be a preordering of level 2z containing T. Then TAQ=T-z"1(Q)
is a preordering of level 2z on F with TAQ=Q [9] (x is the projection
map A—A/ #).

PROPOSITION 3.3. Let v be as above. Then v=2*(TNQ).
Proof. Since TAQ= KerA(x) and 14_#=T<Q, we have

®=Xra0 XEXpag
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Ker() =TAQ=T-7"1(Q) Or ' () D1+.#. Then 1+.#CKer(x) for
any X&Xr,o. Therefore X~v for any x&Xr.q i.e. v&E2*(TAQ).

A field F with a valuation (v, A, _#, F, ) is said to be Henselian
if Hensel’'s Lemma holds over the valuation ring A. Let (Fj,v;) be an
extension of valuated field (F,v), i.e. F,DOF, v,(F¥))Dv(F) and v, |r=v.
We say that (F,,v;) is an immediate extension of (F,v) if v,(F,)=
v(F) and F,=F. To every valued field (F, v), there exists an immediate
algebraic extension (F,,v,) which is Henselian [5]. The extension
(Fy,v;) is called a Henselization of (F,v).

PROPOSITION 3.4. Let (v, A, #F,---) be a valuation on F such that
char (F)=0Q. If (F,v) is Henselian, then 1+ _# CF? for any n.

Proof. Let m&_# and consider f(z)=x%— (1 +m)EA[x]. Going to
the residue field, f(z)=z"~T1=(2"—T1)(z"+ 1)EF[z]. Since
char (F)=0 we have char (F)#2 or char (F)#n, we have T is a
simple root of f(x) on F. Therefore f(x) must have a root in A.
ie. 1+mCA»(CF*,

THEOREM 3.5, Let (F,v) be an Henselian field. Suppose F is formally
real. Then v&=Q*%(T) for any preordering T of higher level 2n.

Proof. Let T be a preordering of level 27 in F. Assume char (F)=£%
for some k0. Then f(z)=x%?+z+k pushed down to f(z)=z+4z=
z(z+ 1). So there exists ¢&F such that 0=c*+c+k=(c+1/2)2+4(k—
1) (1/2)2+3(1/2)2 Since F is formally real. It is absurd. Hence char(F)
=(0. Then 1+ #CF¥C T=x EQ Ker(X) by proposition 3.4, ie. v
2%(T). !

4, T-Forms

Let T be a preordering (of level 2n). A T-form p of dimension r
is an r-tuple {a,T, -, a,T), a:CF. We often write p={a, -, a), A
T-form p={a,, -+, a,y is T-isotropic if there exists ¢, --,t,&T, not all
0, so that X,"a;t;=0; otherwise it is called T-anisotropic. If v&Q(T)
and a=F, select those entries ¢; in p with v(a;))=v(a) mod v(T). Set
I'/((T))=G and let v(a)v(T)=g<G. Then

L
P=;Ea<ag, 15 "% az,r(g)>’
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where v(a, )v(T)=g and every entry a; with v(q;)-v(T)=g is an
ag,i. Put p,=<a 'a,;, -, a 'ay, . p [4].

PROPOSITION 4.1. Suppose v<=Q(T). If a T-form p diagonalized as

L . . . .
p=¢cl@g,1, "+, Qg rpyy i T-isotropic, them at least one residue class

form B, is T-isotropic.

Proof. Suppose X,.cXia,,it, ;=0 where t,;<T are not all zero. Among
the nonzero summands in this equation, say a;,if,; is such that a, i, :/
4,18, EA for all g and all i, Divide the equation by as,:4,; and project
from A to A/ #'=F, If g#heG, then a, ity,:/ar ts, & A since other-
wise we would have the contradiction that v(a,,;)=v(as,;) (mod v(T)).
Because UT/T=U/UN T—F /T, we have an equation Xay,its,:/@s, 1,1
=0=F where a,,iti,i/a,ts,—ut. Hence above assertion holds. [cf. 9,
Theorem 4.5].

THEOREM 4, 2. Assume v&=@*(T). Then a T-form p is T-isotropic
iff at least ome residue class form p, is T-isotropic.

Proof. For the necessary part, v&=92%(T) always implies v&=0Q(T).
Hence by above proposition, it is clear. For the sufficient part, let

p== ‘,-ELG(a,,,l, @y ***, @nay satisfying above condition. Since v{(as:/

ai)Ev(T), we can write as,:/ay =% "'u; where =T and wesU.
Then g, ./a,, &7 and so by assumption, (i, i, *+, #nw) is T-isotropic.
Following the proof of [9, Theorem 4.6,], we can have above result
by using the map UT/U=U/UNT—F/T and proposition 3.1.

LEMMA 4.3. Let (v, A, #,) be a real valuation on F and T=2F*"
for any n. Then T=3ZF™ (v is a real valuation if its residue field F=
A/ A is a formally real field).

Proof. TDOXF? is clear. We must show that TCXF?, Consider a
nonzero element a=T A with a=a,?*+a2"+ - +a2* for a;=F. Say
v(a,) =min {v(a;)}. Since v(a:/a,)=v(a;) —v(a,) >0, we have a;/a,=A
for all i and e=a,**+ -+ +a,*=a,**(1 + (a2/a;)*+ -+ (a,/a,)*). Since
F is formally real, F is formally 2n-real. Thus 1+ (a,/a,)*"+---+ (a,/
a)?* is not contained in .#, Therefore it is a unit in A and we get
a#0, v(e)=v(a,?*)=2n-v(a;)=2n min{v(a;)}. Hence 2z-v(a;)>v(a)
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>0 for any i and so ¢;=A. Then T=3F2,

THEOREM 4.4, Let (v, A, #,I, ) be a real valuation on F and
T=3F? Let T>=TANT=T(+.#) and (F,,v,) be an Henselization
of (F,v) and Ty=X3F?", Then (1) A form p is T’-isotropic iff p is
weakly isotropic (i.e. np is isotropic for some n), (2) T*=F(\T,.

Proof. (1) Since (Fy,v;) is a Henselization of (F,v), (F,,v;) is an
immediate extension of (F,v), i.e. v, has the same value group I" as v
and F,=F, with respect to the valuations v,v,. Since v is a real
valuation, F contains an ordering so F; contains an ordering, then v, is
a real valuation. Since T,=3F, "= F "=3Fon=SFo=T*(=TAT=T)
[4], we have T,=T. Also since T"=TQ+.#)[4], v(T)=v(T 1+
M))=v(T)=2n"=v,(T,). Thus viewied as a 7T*-form or as a T)-
form p has the same residue form after making suitable identification.
Since v&2*(T") by T'=TA+.#)D1+.# and v,E0%(T,) by
Theorem 3.5, we have p is T’-isotropic iff at least one residue class
form jp, is T-isotropic iff at least one residue class form p, is T,-isotropic
iff p is Ty-isotropic by Theorem 4.2, iff p is weakly isotropic by T,=
IF,2,

(2) By Proposition 3.4 and since (Fy,v,) is Henselian, ]+ . #CF*"
T, So clearly T-(1+.#)=T°CFNT,. For the reverse inclusion,
let a=F (N T,. Then {1, —a) is isotropic so {1, —a) is weakly isotropic.
By (1), {1, —a) is Tr-isotropic, hence we have a&=Tv,
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