THEOREMS AND EXAMPLES FOR R-TYPE SUMMABILITY METHODS

C. S. CHUN AND A. R. FREEDMAN

1. Introduction

The concept of R-type summability methods (RSMs) was introduced in [1] as an aid in the study of the strong summability fields associated with certain methods. In [2] an RSM was used to help identify the strong convergence field associated with the well known space bs+c.

In this paper we adopt the notation of [1]. In particular, summability method will simply mean a real valued linear functional S defined on some subspace $c_S \subseteq \omega$, where ω is the linear space of all real sequences. We shall call S regular if $c \subseteq c_S$ and $S(x) = \lim_{x \to \infty} x$ for each $x \in c$. We call S non-negative if $S(x) \ge 0$ for each $x \in c_S$ with $x \ge 0$ (i. e. $x_i \ge 0$ for all i). Further, we let

$$c_S^0 = \{x \in c_S : S(x) = 0\},\ |c_S|^0 = \{x \in \omega : |x| \in c_S^0\},\$$

and

$$|c_S| = \{x \in \omega : x - r \in |c_S|^0 \text{ for some real } r\}.$$

The sets $|c_S|$ and $|c_S|^0$ are the strong summability fields associated with the method S. Unless S is "nice", however, these may not even be subspaces of ω . In [1] we find the following definition and theorem: a method S will be called an RSM when S is regular and $m \cdot |c_S|^0 = |c_S|^0$ (i. e. $|c_S|^0$ is solid); if S is an RSM, then $|c_S|$ and $|c_S|^0$ are subspaces of $|c_S|^0$ respectively and, furthermore, $|c_S|^0$ and $|c_S|^0$ and $|c_S|^0$.

In section 2 we present some results concerning RSMs with a view to better understanding these methods. For example, it turns out that all RSMs are non-negative and therefore continuous (with respect to a particular topology). We also investigate sufficient conditions for S to be an RSM.

In sections 3 and 4 we give several interesting examples which clarify the necessity or sufficiency of the various conditions for RSMs. In section 4 we study particularly matrix methods vis-a-vis RSMs.

2. Conditions for RSMs

We start with two propositions, the proofs of which are routine.

Proposition 1. For any summability method S, the two following conditions are equivalent:

- i) $m \cdot |c_S|^0 \subseteq c_S$;
- ii) $x \in |c_S|^0$, $|y| \le |x| \Rightarrow y \in c_S$.

Note the condition $m \cdot |c_S|^0 \subseteq c_S$ does not imply that $|c_S|^0$ is a subspace of c_S (see example 3 of section 3).

PROPOSITION 2. A regular method S is an RSM if and only if the following condition holds:

$$x \in |c_S|^0$$
, $|y| \le |x| \Rightarrow y \in |c_S|^0$.

Proof. The condition is just another way of stating that $|c_S|^0$ is solid.

PROPOSITION 3. If S is an RSM, then S is nonnegative.

Proof. Let $x \in c_S$, $x \ge 0$ and assume that S(x) = -r where r > 0. Then $x+r \ge 0$ and so (with e = (1, 1, 1,))

$$S(|x+r|) = S(x+r) = S(x) + S(re) = -r + r = 0.$$

Hence $x+r \in |c_S|^0$. Since $0 \le re \le x+r$, we have, by proposition 2, that $re \in |c_S|^0$. Hence S(re) = 0 which is a contradiction.

We now define the *uniform topology* on ω . For any $x \in \omega$ and $\varepsilon > 0$, let

$$N_{\varepsilon}(x) = \{y : \sup\{|x_i - y_i| : i = 1, 2, 3, ...\} < \varepsilon\}.$$

Then the class $\{N_{\varepsilon}(x): x \in \omega, \varepsilon > 0\}$ forms a base for a topology T_{∞} on ω . Note that convergence in (ω, T_{∞}) is just uniform convergence. We assume that any subspace c_S of ω is endowed with the relative topology from (ω, T_{∞}) . On the space m and its subspaces this is the usual sup norm topology.

Theorems and examples for R-type summability methods

PROPOSITION 4. If S is a nonnegative summability method and $e \in c_S$, then S is continuous with respect to T_{∞} .

Proof. Clearly T_{∞} is first countable (in fact it is a metric topology), so we need only show that, if $x^n \to y$ uniformly in c_S , then $S(x^n) \to S(y)$. Given $\varepsilon > 0$, for all large n and for all $i \ge 0$ we have

$$-\varepsilon \leq x_i^n - y_i \leq \varepsilon$$
.

Hence $(-\varepsilon)e \le x^n - y \le \varepsilon e$ and so, since S is clearly monotonic, $-\varepsilon \cdot S(e) = S((-\varepsilon)e) \le S(x^n) - S(y) \le S(\varepsilon e) = \varepsilon S(e)$.

Proposition 3 and 4 clearly imply the following.

Corollary. If S is an RSM, then S is continuous with respect to the uniform topology.

Proposition 5. If S is an RSM, then, for any $x \in c_S$, we have $\liminf x \le S(x) \le \limsup x$.

Proof. Let $x \in c_S$. If $\lim \inf x = -\infty$ then, clearly, $\lim \inf x \le S(x)$. Suppose that $\lim \inf x > -\infty$. For each n, let $y_n = \inf_{k \ge n} x_k$. Each y_n is real, $y = (y_n) \le x$ and $\lim y = \lim \inf x$. Next consider the eventually constant sequence z^n defined by

$$z_i^n = \begin{cases} y_i & \text{if } i \leq n, \\ y_n & \text{if } i > n. \end{cases}$$

Then $z^n \in c \subseteq c_S$ and $S(z^n) = \lim z^n = y_n$. Since $z^n \le x$ we obtain $y_n \le S(x)$ for each n from which it follows that $\lim \inf x = \lim y \le S(x)$. The left hand half of the result is thus proved. The other half is

$$S(x) = -S(-x) \le -\lim_{x \to \infty} \inf -x = \lim_{x \to \infty} \sup_{x \to \infty} x$$
.

The proof of Proposition 5 shows that, if $m \cdot |c_S|^0 = |c_S|^0$, $c \subseteq c_S$, and S(x) = r whenever $x = (x_1, x_2, ..., x_k, r, r, r, r...)$, then $\lim \inf x \leq S(x) \leq \lim \sup x$ for all $x \in c_S$ and, so, S is regular, whence an RSM.

It also follows from Proposition 5 that if S is an RSM, then its domain c_S cannot be too large.

Corollary. If S is an RSM, then $c_S \neq \omega$.

Proof. For example x=(1,2,3,4....) cannot be a member of c_S .

On the other hand, if c_S is, in a certain sense, small, then we can weaken the condition that $|c_S|^0$ be solid and still obtain an RSM as

is done in the next proposition.

Proposition 6. Let S be a summability method such that there exists a bounded sequence not in the domain of S (i.e. $m \subseteq c_S$). Then, if S is regular and $m \cdot |c_S|^0 \subseteq c_S$, we have that S is an RSM.

Proof. After Proposition 2, it is sufficient to let $x \in |c_S|^0$, $|y| \le |x|$ and show that $y \in |c_S|^0$. By the hypotheses and Proposition 1, we have $|y| \in c_S$.

Suppose S(|y|) = -r < 0. Then $|y| + r \ge 0$ and, S(|y| + r) = 0. By definition $|y| + r \in |c_S|^0$. Let $z \in m$ be any bounded sequence. Then the sequence

$$\frac{z}{|y|+r} = \left(\frac{z_i}{|y_i|+r}\right)$$

is also a bounded sequence and so

$$z = \frac{z}{|y|+r} \cdot (|y|+r) \in m \cdot |c_S|^0 \subseteq c_S,$$

hence $m \subseteq c_S$ contrary to hypothesis. Therefore $S(|y|) \ge 0$.

If S(|y|)=r>0, then let u=|x|-|y|. We have $|u|=u\leq |x|$. As before, $|u|\in c_S$ and S(|u|)=0-r<0. This again leads to the contradiction that $m\subseteq c_S$. Hence S(|y|)=0 and $y\in |c_S|^0$.

In the next section we shall look at several examples of RSMs and non RSMs. In particular, in connection with Proposition 6, Example 1 gives a summability method which is regular, $m \cdot |c_S|^0 \subseteq c_S$ but S is not an RSM. However, if S is regular, $m \cdot |c_S|^0 \subseteq c_S$ and S is non-negative, then S is an RSM as the next proposition shows:

Proposition 7. If S is regular, nonnegative and $m \cdot |c_S|^0 \subseteq c_S$, then S is an RSM.

Proof. Again, if $x \in |c_S|^0$ and $|y| \le |x|$, we have $|y| \in c_S$ and $0 \le S(|y|) \le S(|x|) = 0$. Hence $y \in |c_S|^0$.

Proposition 7 implies that any generalized limit (nonnegative regular linear functional on m, see [3]) is an RSM.

Replacing nonnegative with continuous in Proposition 7 will not yield a theorem as is shown below by Example 3.

3. Examples

In this section we present examples of regular summabilities which help distinguish the conditions $m|c_S|^0 \subseteq c_S$, $m|c_S| \subseteq |c_S|^0$, $m \not\subseteq c_S$, continuity (under T_{∞}), nonnegativity, and being an RSM.

The first example shows that S regular, $m \cdot |c_S|^0 \subseteq c_S$, $m \subseteq c_S$ are not sufficient conditions for S being an RSM.

Example 1. Write $\omega = c \oplus d$. For any $x \in \omega$ we can write uniquely $x = x^c + x^d$ where $x^c \in c$ and $x^d \in d$.

Define a linear functional S on ω by $S(x) = \lim_{s \to \infty} x^{c}$. Then $c_{S} = \omega$ and S is a regular summability method with $m \cdot |c_{S}|^{0} \subseteq c_{S}$ and $m \subseteq c_{S}$. By the corollary to Proposition 5, S is not an RSM.

In the next example we show that S being regular and nonnegative (where we even have that c_S is a closed subspace of (ω, T_{∞})) does not imply that $m \cdot |c_S|^0 \subseteq c_S$.

Example 2. Let $A \subseteq I$ be an infinite set of positive integers such that its complement $I \setminus A$ is also infinite and let $c_S = c \oplus \langle \chi_A \rangle$ where χ_A is the caracteristic sequence of A and $\langle \chi_A \rangle$ denotes the subspace of ω spanned by χ_A . Let S be defined by $S(x+t) = \lim x$, where $x \in c$ and $t \in \langle \chi_A \rangle$. One easily checks that S is nonnegative and regular and that $c \oplus \langle \chi_A \rangle$ is closed. Note that $S(\chi_A) = 0$. Now let $B \subseteq A$ such that B and $A \setminus B$ are infinite. Clearly $\chi_B \in m \cdot |c_S|^0$. Suppose that $\chi_B \in c_S$ and so $\chi_B = x + r\chi_A$ where $x \in c$. Then $x = \chi_B - r\chi_A$ and x has infinitely many terms with value 1-r and infinitely many with value -r. This is impossible since x is convergent. In this example $|c_S|^0 = c_0 \oplus \langle \chi_A \rangle$ which is a subspace of c_S but not solid, in fact $m \cdot |c_S|^0 \subseteq c_S$.

By the next example we conclude that a regular summability method S being continuous and satisfying $m \cdot |c_S|^0 \subseteq c_S$ does not imply that S is nonnegative.

Example 3. Suppose that f and g are continuous, regular linear functionals on m (e.g. Banach limits). Let h be the summability method on m defined by

 $h(x) = 2f(x_1, x_3, ..., x_{2n+1}, ...) - g(x_2, x_4, x_6, ..., x_{2n}, ...).$ Then h is continuous, regular and $m \cdot |c_S|^0 \subseteq m = c_S$, but h is not nonnegative since $h(0, 1, 0, 1...) = 2 \cdot 0 - 1 = -1$.

In this example $|c_s|^0$ is not a linear space since $(\frac{1}{2}, 1, \frac{1}{2}, 1, ...)$ and $\left(-\frac{1}{2},1,-\frac{1}{2},1,\ldots\right)$ are both in $|c_S|^0$ but their sum is not.

4. Matrix Methods

For any regular matrix A, we define a regular summability f_A on the convergence field c_A by $f_A(x) = \lim_{n \to \infty} (Ax)_n$. If f_A is an RSM we call A an RSM matrix. If A is a nonnegative (i.e. $a_{ij} \ge 0$) regular matrix then A is an RSM matrix. But when a regular matrix A is not nonnegative, necessary and sufficient conditions for f_A to be an RSM are not at all clear. In this section we present examples and propositions concerning regular matrix methods.

Recall that if A is regular, then f_A is a continuous regular summability on (c_A, T_{∞}) .

Example 4. Let us consider the regular matrix A given by

EXAMPLE 4. Let us consider the regular matrix
$$A$$
 given by
$$\begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{8} & \frac{1}{8} & -\frac{1}{16} & \frac{1}{16} \cdots \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{8} & \frac{1}{8} \cdots \\ 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{4} & \frac{1}{4} \cdots \\ 0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} \cdots \\ \vdots & \vdots \end{bmatrix}$$

If x=(1,2,1,2,1,2,...) and y=(1,1,1,2,1,1,1,2...), then Ax=0, $|y| \le |x|$ and $Ay = \left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3}, ...\right)$ whence $x \in m \cdot |c_A|^0$ and $y \in m \cdot |c_A|^0$ $m \cdot |c_A|^0$ but $y \notin c_A$. Thus $m \cdot |c_A|^0 \nsubseteq c_A$.

Also, if we take x=(0, 1, 0, 1, 0, 1, ...) then Ax=(-1, -1, -1, ...). Therefore f_A is not nonnegative. This example can be generalized as follows.

Proposition 8. Let A be a regular matrix with the following two properties: (1) For each column of A, the members of that column are Theorems and examples for R-type summability methods

either all nonnegative or all nonpositive and (2) $\lim_{n} \sum_{k=1}^{\infty} a_{nk}^{-} = r > 0$ (where $a^{+} = \max(a, 0)$ and $a^{-} = (-a)^{+}$). Then f_{A} cannot be nonegative nor can we have $m \cdot |c_{A}|^{0} \subseteq c_{A}$.

Proof. Let $x \in \omega$ be defined by

 $x_k = \begin{cases} 0 & \text{if } k\text{-th column of } A \text{ is nonnegative or zero,} \\ 1 & \text{if } k\text{-th column of } A \text{ is nonpositive.} \end{cases}$

Then

$$\lim_{n} (Ax)_{n} = \lim_{n} \left(\sum_{k=1}^{\infty} a_{nk}^{+} x_{k} - \sum_{k=1}^{\infty} a_{nk}^{-} x_{k} \right)$$

$$= -\lim_{n} \sum_{k=1}^{\infty} a_{nk}^{-} = -r < 0.$$

Therefore $x \in c_A$ and $f_A(x) = -r$. Hence f_A is not nonnegative.

To prove that $m \cdot |c_A|^0 \not\subseteq c_A$ we proceed as follows. By the standard gliding hump technique we can find two sequences of positive integers $K_1 < K_2 < K_3 < ...$ and $N_1 < N_2 < N_3 < ...$ such that

$$\sum_{j=1}^{K_i} |a_{N_i j}| < \frac{1}{i} \text{ and } \sum_{j=K_i+1}^{\infty} |a_{N_i j}| < \frac{1}{i}.$$

Define $y_j = r$ if $K_{2i} \le j < K_{2i+1}$, for some i, and $y_j = 0$ otherwise. If we further define

 $x_j = \begin{cases} 1+r & \text{if the } j \text{ th column of } A \text{ is non-positive,} \\ r & \text{otherwise,} \end{cases}$

then $0 \le y \le x$ and, firstly,

$$f_A(x) = r \cdot \lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk}^+ - (1+r) \lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk}^- = 0,$$

so that $x \in |c_A|^0$ and, secondly,

$$(Ay)_{N_{2i}} \rightarrow r \text{ and } (Ay)_{N_{2i+1}} \rightarrow 0 \ (i \rightarrow \infty)$$

so that $y \notin c_A$. This completes the proof.

Both conditions in the above proposition are required: A nonnegative regular matrix is an RSM matrix and satisfies the first condition but not the second. The next example is a matrix which satisfies the second but not the first and turns out also to be an RSM.

Example 5. Let A be given by

If d_n is defined to be $(x_1+x_2+...+x_n)/n$, then, for any x, the nth term of Ax is clearly $3d_{3n}-2d_n$. We show that, for $x \ge 0$, Ax converges to zero if and only if d_n converges to zero. This shows that $|c_A|^0$ $|\sigma_1|^0$ (the strongly cesaro summable (to zero) sequences—see [1]) and thus $m \cdot |c_A|^0 = |c_A|^0$. Obviously, if $d_n \to 0$, then $3d_{3n} - 2d_n \to 0$.

Now let $x \ge 0$ and suppose $3d_{3n} - 2d_n \to 0$. By the nonnegativity of x we obtain, for all n, that

$$d_{n+1} \ge \frac{n}{n+1} d_n \tag{*}$$

First suppose d_n is unbounded. Choose an N such that $N \ge 2$ and, if $d_n > N$, then (n-2)/n > 5/6 and $3d_{3j} - 2d_j < 1$ for all $j \ge n/3$. Let n be the first index such that $d_n > N$. If n=3p, then

$$1>3d_{3p}-2d_{p}>3d_{p}-2d_{p}=d_{p}$$

whence

$$d_n = d_{3p} < \frac{1 + 2d_p}{3} < 1 < N.$$

If n=3p-1, then, using (*),

$$1>3d_{3p}-2d_{p}\geq 3\cdot \frac{3p-1}{3p}d_{3p-1}-2d_{p}$$

$$>\left(3\cdot \frac{3p-1}{3p}-2\right)d_{p}>\left(\frac{5}{2}-2\right)d_{p}=\frac{d_{p}}{2},$$

$$d_{n}\leq \frac{3p}{3p-1}d_{3p}<\frac{6}{5}\left(\frac{1+2d_{p}}{3}\right)<2\leq N.$$

$$d_n \leq \frac{3p}{3p-1} d_{3p} < \frac{6}{5} \left(\frac{1+2d_p}{3} \right) < 2 \leq N.$$

A similar contradiction is obtained if n=3p-2. It follows that d_n is a bounded sequence.

Now let $u=\limsup_{n} d_n$. For any $\varepsilon > 0$, we have $d_n \ge u - (\varepsilon/2)$ for infinitely many n. From this and (*) we conclude that $d_{3n} \ge u - \varepsilon$ for Theorems and examples for R-type summability methods

infinitely many n. Since $d_n \le u + \varepsilon$ for all large n, we have $3d_{3n} - 2d_n \ge 3(u - \varepsilon) - 2(u + \varepsilon) = u - 5\varepsilon$ for infinitely many n. This implies that u = 0 and hence that d_n converges to zero.

Examples can also be found of matrices A satisfying exactly one or none of the conditions of Proposition 8 such that A is not an RSM matrx. The following is one such.

Example 6. Let

$$A = \begin{bmatrix} 1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \dots \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \dots \\ \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \dots \\ \vdots & \vdots \end{bmatrix}$$

Let $x \in \omega$ be defined by x = (0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, ...). Then $(Ax)_n = -1$ for all n, so that $x \in c_A$ and $f_A(x) = -1$. Hence f_A is not nonnegative and thus f_A is not an RSM. Furthermore, if we let

$$x = (1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, ...)$$

 $y = (1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 7, ...)$

then $(Ax)_n=0$ for all n so that $x \in |c_A|^0$. But $y \notin c_A$ since $(Ay)_n=1$ if n is odd and =0 if n is even. Thus $m \cdot |c_A|^0 \nsubseteq c_A$.

The previous example shows that a regular matrix which is "essentially nonnegative" may still not be an RSM. Essentially nonnegative means that $\lim_n \sum_k a_{nk}^- = 0$. However, as is often the case with matrix summabilities, if we restrict the domain to the bounded convergence field, i.e., $c_A \cap m$, then f_A becomes an RSM. Firstly, if A is an essentially nonnegative regular matrix and $A^+ = (a_{nk}^+)$ (which is nonnegative and regular), then $c_A \cap m = c_{A^+} \cap m$ and $f_A(x) = f_{A^+}(x)$ for all $x \in c_A \cap m$. We omit the straightforward proof.

Furthermore, we have

Proposition 9. Let S be an RSM on c_S and let T be the restriction of S to the domain $c_T = c_S \cap m$. Then $|c_T|^0 = |c_S|^0 \cap m$ and T is an RSM. Proof. That $|c_S|^0 \cap m \subseteq |c_T|^0$ is clear. If $x \in |c_T|^0$ then $|x| \in c_T$ and T(|x|) = 0. Hence x is bounded and S(|x|) = 0 so that $x \in |c_S|^0 \cap m$

C.S. Chun and A.R. Freedman

m. Now let $x \in |c_T|^0$ and $b \in m$. Then $bx \in m$ and $bx \in |c_S|^0$ so that $m \cdot |c_T|^0 \subseteq |c_T|^0$.

From proposition 9 and the remarks preceding it we obtain our concluding result.

Proposition 10. If A is an essentially nonnegative matrix and S is the restriction of f_A to the domain $c_A \cap m$, then S is an RSM.

References

- A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math., 95(1981), 293-305.
- A.R. Freedman, Lacunary sets and the space bs+c, J. London Math. Soc.
 31(1985) 511-516.
- 3. A.R. Freedman, Generalized limits and sequence spaces, Bull. London Math. Soc., 13(1981), 224-228.

Simon Fraser University Burnaby, British Columbia Canada V5A 1S6

garing seem on the first of the seem Linear control of the seem of the seem Support the seem of the se