J. Korean Math. Soc. 25(1988), No.2, pp.315-324

THEOREMS AND EXAMPLES FOR
R-TYPE SUMMABILITY METHODS

C.S. Cuun anp A.R. Freepman

1. Introduction

The concept of R-type summability methods (RSMs) was introduced
in [1] as an aid in the study of the strong summability fields associated
with certain methods. In [2] an RSM was used to help identify the
strong convergence field associated with the well known space &s-+c.

In this paper we adopt the notation of [1]. In particular, summability
method will simply mean a real valued linear functional S defined on
some subspace csCw, where w is the linear space of all real sequences.
We shall call S regular if cScg and S(z)=lim z for each z€c. We
call 8§ non-negative if S(a) >0 for each z&cs with >0 (.e. 2;>0
for all 7). Further, we let

¢s®= {z€cs 1 S(z) =0},

les|®={z€w : |z| €csY,
and

lesl={z€w : z—rE |c5|° for some real r}.

The sets [cg| and |cg|® are the strong summability fields associated
with the method §. Unless S is “nice”, however, these may not even
be subspaces of w. In [1] we find the following definition and theorem:
a method S will be called an RSM when S is regular and m-|cs|®=
les|® (e. es|? is solid); if S is an RSM, then |cg| and |cg|® are
subspaces of ¢s and ¢g® respectively and, furthermore, ¢<|cs| and ¢
et ICslo.

In section 2 we present some results concerning RSMs with a view
to better understanding these méthods. For example, it turns out that
all RSMs are non-negative and therefore continuous (with respect to a

particular topology). We also investigate sufficient conditions for S to
be an RSM.
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In sections 3 and 4 we give several interesting examples which clarify
the necessity or sufficiency of the various conditions for RSMs. In
section 4 we study particularly matrix ‘methods vis-a-vis RSMs.

2. Conditions for RSMs
We start with two proposithns; the proofs of which are routine.

Prorosition 1. For any summability method S, the two following
conditions are equivalent:

D) m- les|®Ccss :

ii) xEICsI" lyl <lzl=Dyeecs.

Note the condition m - |eg]?Ccs does not imply that [es|® is a
subspace of cg (see example 3 of section 3).

- PROPOSITION 2. A regular method S is an RSM zf ana’ only zf the
followmg condition holds:
z€ lesly Iyl <lz|=Dye|es]O

Proof. ‘The condition is just another way of stating that lcSl0 is

solid.

Prorosition 3. If S is an RSM, then S z's nonnegative.

Proof. Let x&cs, >0 and assume that S (.z) = —r where r>0.. Then

z+r>0 and so (with e=(1,1,1, ...... ) : :
S(lx—l—rl) S@+r)=8(z)+S@re) *’-—-r-[—r—

Hence z+r&|cs|® Since 0<re<z+r, we have, by proposmon 2,

that rec |Csl° Hence S (re) =0 Whlch is a contradlctlon.

We now deﬁne the umform topology on w. For any an) and s>0

let
4 N(x) -y sup{lzi—y:] 1 i=1,2,3, ..} <¢}.

Then the class {N, (x) zEW, e>0} forms .a base for-:a topology Tm
on o. Note that convergence in (o, T.) is just uniform convergence.
We assume that any subspace cs of @ is endowed with ‘the relative
topology from (w, T.). On the space m and its subspaces thls is the

usual sup norm topology. I
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Prorosition 4. If S is a nonnegative summability method and eEcg,
then S is continuous with respect 0 Tw.

Proof. Clearly T.. is first countable (in fact it is a metric topology),
so we need only show that, if 27—y uniformly in ¢g, then S(z*)—
S(y). Given >0, for all large n» and for all >0 we have

—eLzr—y;<e.
Hence (—&)e<z”"—y<cee and so, since S is clearly monotonic,
—e - S(e)=8((—8)e) <S(a") —S(y) <S(ee) =eS (e).

Proposition 3 and 4 clearly imply the following.

CoroLrarY. If S is an RSM, then S is continuous with respect to the
uniform topology.

Prorosition 5. If S is an RSM, then, for any x&cg, we have
liminf x<8(x) <lim sup x.

Proof. Let z&c¢s. U lim inf 2= — oo then, clearly, lim inf 2<S(2).
Suppose that lim inf 2>>—oc0. For each =, let y,=infs.,2;. Each v,
is real, y=(y,) <z and lim y=lim inf z. Next consider the eventually
constant sequence z” defined by

n_ {y,- lf ZS?Z,
B y, if i>n.
Then 27€cScg and S(z?) =lim z*=y,. Since "<z we obtain y,<.S(z)
for each n from which it follows that lim inf z=lim y<S(z). The
left hand half of the result is thus proved. The other half is
S(z) =—8(—z) <—lim inf—z=lim sup =

The proof of Proposition 5 shows that, if m - |cg|®=]|c5]|% cSeg,
and S(2) =r whenever 2= (21, 3, ..., 2, 7, 7, 7...), then lim inf 2<S (@)
<lim sup z for all z&cg and, so, S is regular, whence an RSM.

It also follows from Proposition 5 that if § is an RSM, then its
domain cg cannot be too large.

CoroLLARY. If S is an RSM, then cs+ w.
Proof. For example z=(1, 2, 3, 4...... ) cannot be a member of ;.

On the other hand, if ¢g is, in a certain sense, small, then we can
weaken the condition that [cg|? be solid and still obtain an RSM as
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is done in the next proposition.

Prorosition 6. Let S be a summability method such that there exists a
bounded sequence not in the domain of S (:e. mZcs). Then, zf S is
regular and m - |cs|"Ccs, we have that S is an RSM. ‘

Proof. After Proposition 2, it is sufficient to let z€ IcSIO Iy[ < '1xi
and ‘show that y< jeg|® By the hypotheses and Proposition 1, we have

Iyl es.

Suppose S(|y!) =—r<{0. Then |y|—l—r>0 and, S(lyl-l—r) 0. By
definition [y|+re& |eg|®. Let x&m be any bounded sequence. Then the
sequence

2 — 23
: |y (ly;IJrr)
is also a bounded ”Se'quen‘be and so -
!yl+r (‘yl—*_r)em ICSlOQCS,

hence mCtg contrary to hypothesis. Therefore S(]y]) =0. ,

If S(y!)=r>0, then let u=[z|—]y]. - We have la|=u<|z]. As
before, |z|Scs and S(Jz|) =0—r<0. This again leads to the contra-
diction that mCe¢s. Hence S(Iyl) =0 and y<leglO.

2=

In the next section we shall look at several examples of RSMs and
non RSMs. In particular, in connection with Proposition 6, Example
1 gives a summability method which is regular, m - |cs|%Ces but S
is not an RSM. However, if S is regular, m - l¢s|°Ccs and S is
non—negative, then S is an RSM as the next proposition shows:

Prorosition 7. If S is regular, nonnegatz'ae and m - IcSIOQ ¢s, then S
is an RSM '

Proof. Again, if 2€|cg|® and |y| <|z|, we have |y|Ecg and -0<
S(I»1) <S(lz])=0. Hence yelcslo,

Proposition 7 implies that any generahzed limit (nonnegatlve regular

linear functional on m, see [3]) is an RSM.
Replacing nonnegative with continuous in Proposition 7 will not yleld

a theorem as is shown below by Example 3.
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3. Examples

In this section we present examples of regular summabilities which
help distinguish the conditions mles|®Ses, mlcsl S lesl? mEess
continuity (under T.), nonnegativity, and being an RSM. "

The first example shows that S regular, m - [¢s|°Scs, mSes are
not sufficient conditions for S being an RSM. '

Examele 1. Write o=c@®d. For any z€w we can write uniquely
z=x°+2? where z€c¢ and 2¢<d.

Define a linear functional S on w by S(z) =lim z¢. Then ¢s=w and
S is a regular summability method with m - |es|°Ces and mSes. By
the corollary to Proposition 5, § is not an RSM.

In the next example we show that S being regular and nonnegative
(where we even have that c¢g is a closed subspace of (@, T.)) does
not imply that m - |cg]?Ccs.

Examere 2. Let ACI be an infinite set of positive integers such that
its complement I\A is also infinite and let cs=c@{)x,> where ¥4 is the
caracteristic sequence of A and {X,) denotes the subspace of w spanned
by X4. Let S be defined by S(z+¢)=lim z, where z&c and t= (X ).
One easily checks that § is nonnegative and regular and that c@®<{X4)
is closed. Note that S(X,)=0. Now let BCA such that B and A\B
are infinite. Clearly Xz&m- |cg{®. Suppose that XzEcs and so Xp=z+
X4 where z&c. Then 2=Xz—rX, and z has infinitely many terms
with value 1—7 and infinitely many with value —z. This is impossible
since z is convergent. In this example |¢g|%=c@ <X ) which is a
subspace of cg but not solid, in fact m- |ecs|®Secg. :

By the next example we conclude that a regular summability method
S being continuous and satisfying m-|cg|°Secg does not imply that S
is nonnegative. ' A

Exameie 3. Suppose that f and g are continuous, regular linear
functionals on m (e.g. Banach limits). Let %2 be the summability
method on 7 defined by

h(x) =2f(1'1s L3y eves Lo2n+1s ---) “g(xz, L4y Ly +++5 L2ns -)
Then % is continuous, regular and m-|cg|°Cm=cs, but k is not
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nonnegative since £(0,1,0,1...) =2-0—1=—1.

. In thi_s-q)_;am_ple les|® is not a linear space sivnce:(—%—,, 1, %—, 1, ) and

(*--%-, 1, —%, 1, ) are both in lcslovbut their sum is riof.

4. Matrix Methods

~ For any regular matrix A, we define a regular summability f. on
the convergence field ¢s, by f4(z) =lim(42),. If f4is an RSM we
call A an RSM matrix. If 4 is a nonnegatlve (i.e. a;;=0) regular
matrix then A is an RSM matrix. But when a' regular matrix A4 is
not nonnegative, necessary and sufficient conditions for fa4 to be an
RSM are not at all clear. In this section we present examples and
proposmons concerning regular matrix methods. : :

Recall that if A is regular, then f, is a continuous regular summa-

b111ty on (¢4, Tw).

'-E}fAi\)IIfLE .4: Let us consider thei 'rég‘.gul'ar matrix A gliven;by‘

B e

R T T T e =

A=lo 0 0 0 1 S A A
6 0o o 0o o0 0.1 -} I

I e=(121212.) and y=(1,1,1,21L112.), then Az=0,
]y[<lxl ‘and - Ay—(— =, E ) Whence xEm chI‘J ai;d ye

me ]cAIO but y&ca. Thus m- [cAlogt_cA
Also, if we take z=(0,1,0,1,0,1,...) then Az=(— 1 ——1 1 w)e

Therefore: f4 lS not nonnegatlve This example can be generahzed as

follows. : '

ProrositioN 8. Let A be a regular matrix with the following two
properties: (1) For each column of A, the members of that column are
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either all nonnegative or all nonpositive and (2) lim2ay=r>0 (where
n k=1
a*=max(a,0) and a=(—a)*). Then f, cannot be nonegative nor can

we have m- |cy[°Ccy.

Proof. Let rw be defined by
e {0 if 2-th column of A is nonnegative or zero,
711 if 2-th column of A is nonpositive.

Then
lim(Az) ,=lim (;j ahar— gja;kxk>
n z =1 =1
= —limkia,ﬁ,z —r<0.
n =1
Therefore z&c¢, and f4(x) =—r. Hence f, is not nonnegative.

To prove that m-|c,|°Zc, we proceed as follows. By the standard

gliding hump technique we can find two sequences of positive integers
K1<K2<K3<... and N1<J\72<N3<... SUCh that

K; oo 1
_Z |ll1v.»j|<% and. Z |aN.jl<7-
Jj=1 j=Ki+1

Define yj=r if Ky<j<K;,, for some i, and y;=0 otherwise. If we
further define

. {1+r if the jth column of A is non-positive,
=

7 otherwise,
then 0<y<az and, firstly,

fA(x)zr-limIi:ajk—(l—i—r)lim: a7=0,
nooo k=] ni—vo0 k=1
so that z&€ |c,|? and, secondly,

(Ay) ny—r and (Ay) yyn ™0 (E—o0)
so that y&c,. This completes the proof.

Both conditions in the above proposition are required: A nonnegative
regular matrix is an RSM matrix and satisfies the first condition but
not the second. The next example is a matrix which satisfies the
second but not the first and turns out also to be an RSM.

Examreie 5. Let A be given by
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-1 .1..1 0o 0 _0 0.
111 1 1 1 4
2 2 20 27 2 2 vee -
-1 _1r _xr 1 1 1 1 ‘1 -1
A= -3 "3 "5 3 3 3 3 3 30

If d, is defined to be (z;+z,+...+2,) /n, then, for any z, the nth term
of Az is clearly 3ds,—2d,. We show that, for z>0, Az converges
to zero if and only if d, converges to zero. This shows that [¢4|%=
|o119 (the strongly cesdaro summable (to zero) sequences-see [1]) and
thus m- |¢4|%=|e4]% Obviously, if d,—0, then 3ds;,—2d,—0.

- Now let z>0 and suppose 3d3,, 2d —>0 By the nonnegat1v1ty of z
we obtaln, for all n, that ‘

First suppose d, is unbounded. Choose an N such that N>2 .and, if
d,>N, then (z—2)/n>5/6 and 3d3, 2d;<1 for all ]>n/3 Let 7 be
the first index such that d,>N. If n=3p, then
o 1>8dyy—2d,>8d,—2dp=d,
whence ’ ' -

dy=dyp <120 <.
If #=3p—1, then, using (*),

1>>3d5,—2d, >3- 31’3;1 dsp1—2d,
e
>(3, "5 =2)dp> =

A similar contradlctmn IS obtamed 1f n—Sp -2. It follows that J,, is
a bounded sequence.

Now let #=lim sup,d,. For any £>0, we have d,,Zu—(e/ 2) for
infinitely many #. From this and (*) we conclude that d3,>u—e for
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infinitely many ». Since d,<u-¢ for all large n, we have 3d;,—2d,
>3(u—e) —2(u+c) =u—5¢ for infinitely many ». This implies that z=
0 and hence that d, converges to zero.

Examples can also be found of matrices A satisfying exactly one or
none of the conditions of Proposition 8 such that A is not an RSM
matrx. The following is one such.

ExampLE 6. Let

1 0 1 -1 0 0 0 0..
1 1 1 1

X 4, 1L 4 L 4, 1 _1
3 3 3 3 3

Let z€w be defined by 2=(0,0,0,1,0,2,0,3,0,4,0,...). Then
(Az),=—1 for all », so that rc, and f,(2)=—1. Hence f, is
not nonnegative and thus f4 is not an RSM. Furthermore, if we let

rz=(1,1,1,2,1,3,1,4,1,5,1,6,1,7, ...)
y=(1,1,1,1,1,3,1,1,1,5,1,1, 1, 7, ...)
then (Az),=0 for all » so that z& |c4}°. But y&c, since (Ay),=1
if #n is odd and =0 if 7 is even. Thus m-|cs|°%ec,.

The previous example shows that a regular matrix which is “essen-
tially nonnegative” may still not be an RSM. Essentially nonnegative
means that lim,>; az=0. However, as is often the case with matrix
summabilities, if we restrict the domain to the bounded convergence
field, i.e., c4Nm, then f, becomes an RSM. Firstly, if A is an
essentially nonnegative regular matrix and A*=(e;) (which is
nonnegative and regular), then csNm=cy+ Nm and f,(z) =f4+(z) for
all zecyNm. We omit the straightforward proof.

Furthermore, we have

ProrosiTion 9. Let S be an RSM on cg and let T be the restriction
of S to the domain cy=csNm. Then lcp|°=|cg|®Nm and T is an RSM.
Proof. That |cs|"NmSler|® is clear. If zE|er|® then |z|Ecr
and T(]z])=0. Hence z is bounded and S(}z]) =0 so that z& [¢5|°N
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m;. Now. let a:Eich" and b Em. Then brem  and bzelcslo so that
me IGTFOCfCTl :

From proposmon 9 and the remarks precedmg it we obtam our
concludmg result. :

PROPOSITION IO T f A s an essentzally nonnegatwe matriz and S is the
restriction of fa to the domain ca\m, then S is an RSM.
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