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THEOREMS AND EXAMPLES FOR
R-TYPE SUMMABILITY METHODS

C. S. CHUN AND A. R. FREEDMAN

1. Introduction

The concept of R-type summability methods (RSMs) was introduced
in [lJ as an aid in the study of the strong summability fields associated
with certain methods. In [2J an RSM was used to help identify the
strong convergence field associated with the well known space bs+c.

In this paper we adopt the notation of Cl]. In particular, summability
method will simply mean a real valued linear functional S defined on
some subspace csc:;;;,w, where w is the linear space of all real sequences.
We shall call S regular if cc:;;;,cs and Sex) =lim x for each xEc. We
call S non-negative if S(x)::::::O for each xEcs with x::::::O (i. e. Xi::::::O
for all i). Further, we let

cso= {xEcs : Sex) =O},
Ics\o= {xEw : Ixl Eci}'

and
1 Cs 1= {xEW : x-rE ICs I0 for some real r}.

The sets !cs I and !cs I0 are the strong summability fields associated
with the method S. Unless S is "nice", however, these may not even
be subspaces of w. In Cl] we find the following definition and theorem:
a method S will be called an RSM when S is regular and m' 1Cs 10 =
!cs I0 (i. e. ICs I0 is solid); if S is an RSM, then !cs I and !cs I0 are
subspaces of Cs and cso respectively and, furthermore, cc:;;;, Icsl and Co
c:;;;, !cs Io.

In section 2 we present some results concerning RSMs with a view
to better understanding these methods. For example, it turns out that
all RSMs are non-negative and therefore continuous (with respect to a
particular topology). We alsO investigate sufficient conditions for S to
be an RSM.
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In sections 3 and 4 we give several interesting examples which clarify
the necessity or sufficiency" 6f the' variotts condItions for RSMs. In
section 4 we study particularly matrix .methods viS-a-vis RSMs.

2~Conditions for RSMs

We start with two propositions, the proofs of which are routine.

PROPOSITION 1. For any summability method S, the two following
conditions' are equivalent:

i) m' ICsl°f;cs;
ii) xE ICslo, Iyl::;; IxlC:::>yEcs.

Note the condition m' ICsl°f;cs does not imply that Icslo is a
subspace of Cs (see example 3 of section 3).

PROPOSITION 2. A regular method S is an RSM if and only if the
following condition holds:

xE !cslo, Iyl::;; lilc:::>yE Icslo.

Proof. The condition is just another way of stating that ICs I° IS

solid.

PROPOSITION 3. If S is an RSM, then S is nonnegative.

Proof. Let xEcs, .x~O and assume that Sex) =-r wherer>O. Then
x+r:::::O and so (withe= (1,1,1, »

Se Ix+rl) ..:-8 (x+r) =S(x) +8 (re) .. ' -r+r=O.
Hence x+rE lcslo. SinceO::;;resx+r, we have, by proposition, 2,
that reE ICs I0. Hence S (re) =0 which is a contradiction.

,. "

. '.' " - ,

We now define the uniform topology on w. For any xEw and e>O,
let'

N.(x) = {y: sup {lXj-Y;! : i=1,2, 3~ ~ ..}<e}.
Then the class {N.(x) : 'xEw, e>O} forms,abase for "a toWlogy Too
on w. Note that convergence in (a>, Too) is just uniform c~!1vergence.
We assume that any' suospace Cs of w is endowed with 'the re'lative
topology from (w, Too). On the space m and its subspaces this is the

..- --,._- ..-"-.---"~. ------ - --
usual sup norm topology.." _ -
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PROPOSITION 4. If S is a nonnegative summability method and eEcs,

then S is continuous with respect to Too.

Proof. Clearly Too is first countable (in fact it is a metric topology),
so we need only show that, if xn----+y uniformly in cs' then S (xn)----+

S(y). Given e>O, for all large n and for all i~O we have
- e:S: Xin- yi:S: c.

Hence (-e)e:S:xn-y:S:ee and so, since S is clearly monotonic,
-e . See) =S( (-e)e) :S:S(xn) -8 (y) :S:S(ee) =e8(e).

Proposition 3 and 4 clearly imply the following.

COROLLARY. If 8 is an RSM, then 8 is continuous with respect to the

uniform topology.

PROPOSITION 5. If S is an R8M, then, for any xEcs, we have
lim inf x:S: 8 (x) :s: lim sup .T.

Proof. Let xEcs. If lim inf x=-oo then, clearly, lim inf x:S:8(x).

Suppose that lim inf x>-oo. For each n, let Yn=infhnxk' Each Yn
is real, y= (Yn):S:x and lim y=lim inf x. Next consider the eventually
constant sequence zn defined by

{
Yi if i:S:n,zn-

i - Yn if i>n.
Then znEc<;;;:'Cs and S(zn) =lim zn=Yn' Since zn:s: x we obtain yn:S:S(x)
for each n from which it follows that lim inf x=lim y:S:8(x). The
left hand half of the result is thus proved. The other half is

8(x)=-8(-x):s:-lim inf-x=lim SUp.T.

The proof of Proposition 5 shows that, if m' !cs I0= !cs i0, c<;;;:'cs,

and Sex) =r whenever :1:= (Xl' X2' ... , xk, r, r, r ... ), then lim inf x:S:8(.r)
:s:lim sup X for all xEcs and, so, S is regular, whence an RSM.

It also follows from Proposition 5 that if S is an RSM, then its
domain Cs cannot be too large.

COROLLARY. If 8 is an RSM, then Cs-=Fw.

Proof. For example x= (1, 2, 3, 4 ) cannot be a member of Cs.

On the other hand, if Cs is, in a certain sense, small, then we can
weaken the condition that ICs I° be solid and still obtain an RSM as
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is done in the next proposition.

PROPOSITION 6. Let S be a summability method such that there exists a
bounded sequence not in the domain of S (i~ e. mCkcs). Then, ·if S is
regular dnd m' Icslo~cs, we have that S is an RSM.

Proof. After Proposition 2, it.is sufficient to let xE Icslo, Iyl ::;;lxl
and show that yE Icslo. By the hypotheses and Proposition 1, we have
Iyl Ecs·

Suppose SClyl) =-r<O. Then Iyl +r~O and, SClyl +r) -:-0. By
definition Iyl +rE ICslo. Let zEm be any bounded sequence. Then the
sequence

Iy(+r (IYiii+r)

is also abounded sequence and so

z Iyt+r' Clyl +r) Em' !cslo~cs,

hence m~'cs contrary to hypothesis. Therefore SClyl) ~O.
If SClyl) =r>O, then let u= Ixl-lyl. We have litl =uS: Ixl. As

before, lul Ecs and SClul) =O-r<O. This agai~ leads to the contra­
diction that m~cs. Hence SClyl) 0 and. yE Icslo.

In the next section we shall look at several examples of RSMs and
non RSMs. In particular, in connection with Proposition 6, Example
1 gives a sum~ability method which is reg1,llar, m·' ICslo~cs but S
is not an RSM. However, if S is regular, m' Icslo~cs and S is
non-negative, then S .is an RSM as the next proposition shows:

PROPOSITION 7. If S is regular, nonnegative and m . ICslo~cs, th~ri S
is an RSM.

Proof. Again, if xE lcslo and Iyl::;; lxi, we have lylEcs arid ·0::;;
SClyl) ::;;SClxl) =0. HenCe?E !cs I0,

Proposition 7 implies that any generalized Hmit Cnonnegative. re~ular
linear functional on m, see [3J) is· an Rsivr. .

Replacing nonnegative with continuous in Proposition 7 will not yield
a theorem as is shown below by Example 3.
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3. Examples

In this section we present examples of regular summabilities which
help distinguish the conditions mlcslo~cs, mlcsl ~ !cslo, me;tcs,
continuity (under Too), nonnegativity, and being an RSM.

The first example shows that S regular, m' Icslo~cs, m~cs are
not sufficient conditions for S being an RSM.

EXAMPLE 1. Write w=c(f;d. For any xEw we can write uniquely
x=xc+xa where xCEc and xaEd.

Define a linear functional S on w by Sex) =l~m xc. Then Cs=W and
S is a regular summabiIity method with m' !cslo~cs and m~cs. By
the corollary to Proposition 5, S is not an RSM.

In the next example we show that S being regular and nonnegative
(where we even have that Cs is a closed subspace of (w, Too)) does
not imply that m· !cs Io~cs.

EXAMPLE 2. Let A~I be an infinite set of positive integers such that
its complement I\A is also infinite and let cS=C(f;<XA) where XA is the
caracteristic sequence of A and <XA) denotes the subspace of w spanned
by XA. Let S be defined by S(x+t) =lim x, where xEc and tE <XA).
One easily checks that S is nonnegative and regular and that c(f;<XA)
is closed. Note that S (XA) =0. Now let B~A such that B and A \B
are infinite. Clearly XBEm·!cslo. Suppose that XBEcS and so XB=x+
rXA where xEc. Then x=XB-rXA and x has infinitely many terms
with value 1-r and infinitely many with value -r. This is impossible
since x is convergent. In this example ICslo=co(f;<XA) which is a
subspace of Cs but not solid, in fact m·lcslo~cs.

By the next example we conclude that a regular summabiIity method
S being continuous and satisfying m'lcslo~cs does not imply that S
is nonnegative.

EXAMPLE 3. Suppose that f and g are continuous, regular linear
functionals on m (e. g. Banach limits) . Let h be the summability
method on m defined by

hex) =2j(Xl' Xg, ... , X2n+b ••• ) -g(X2' X4' X6' ... , X2m •••).

Then h is continuous, regular and m'lcslo~m=cs, but h is not
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nonnegative since h (0, 1, 0, 1. ..) = 2·0-1=-l.

-~H this e,xample ICs 1° is D;ot a linear spa~e since.( ~, 1, ~, 1, ,...) and

( 1 1 1 1) b h .' I 10 b h" .',-2' , -2' ,... are ot In ,cs ut t elr sum IS not.

4. Matrix Methods

, For any regular matrix A, we define a regular summability fA on
the convergence field CA by fA (x) ,Hm (Ax) n' If fA is an RSM we
call A an RSM matrix. If A is a nonnegative (L e. aij~O) regular
matrix then A is an RSM matrix. But when a regular matrix A is
not nonnegative, necessary and sufficient 'co~ditions for fA to be an
RSM are not ~t all clear. In this section we present examples and
propositions concerning regular matrix methods. ,,',

Recall that if A is r~gular, then fA is a continuolls regular summa~
bility on (CA' Too). ' "

EXAMPLE 4: Let us consider the regular matrix A given' by
, "

1" I 1 1 1 1 1 1 1
2 2 if '4 S S -16 '16'"

0 0, 1 1 1 1 1 1 1
2 2 '4 4' -S s·..

:'11=
0 0- 0 0 1 1 1 1 1

2' 2 -4 4':'

0 0 0 0, 0 O. 1
-1 1

-2" 2'"
.'. .

If X= (1,2,1,2,1,2, ...) and' y= (1,1,1,2,1, 1, l~ 2...), then Ax=O,

I ' r 'I I d 'A ( 2 1 2 1 )' h - I 10 ' 'd' ..y,:S;; x, an y=3'3~3'3':" w ence ,xEm' CA _ an yE

m'!cAlo but yf!=cA' 'Thus 'm· \cAlo~CA' ' ' ,

Also, if we take x=(O,l,O,l,O,l~...) thenAx=(-l,-1,-l, ...).
Therefore fA is not ,nonnegative. This e;x:ampl~ can be g~era1ized, as
follows. ' -" " , " , -

PROPOSITION 8. Let A be a regular matrix with the following two
properties: (1) For each column of A, the member-s of that column ate
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=
either all nonnegative or all nonpositive and (2) limI;a;;k=r>O (where

n k=!

a+ =max (a, 0) and a- = ( -a) +). Then fA cannot be nonegative nor can
we have m· leA Io~CA'

Proof. Let xEw be defined by
_ {O if k-th column of A is nonnegative or zero,

Xk- 1 if k-th column of A is nonpositive.
Then

=
= -limI;a;;k= -r<O.

n k=!

Therefore xECA and fA(x)=-r. Hence fA is not nonnegative.

To prove that m· leA log CA we proceed as follows. By the standard
gliding hump technique we can find two sequences of positive integers
K 1<K2<K3< ... and N 1<N2<N3< ... such that

Ki 1 = 1
I;laNijl<---;- and I; laN,jl<---;-.
j=l Z j=K,+! Z

Define Yj=r if K2is;,j<K2i+l' for some i, and Yj=O otherwise. If we
further define

x.= {1 +r if the j th column of A is non-positive,
J r otherwise,

then Os;,ys;,x and, firstly,
= =

fA (x) =r·lim I;a,;j,- (1 +r) lim I;a;;k=O,
71->= k=l 11 __ 00 k=l

so that xE ICA I0 and, secondly,
(AY)N2i~r and (AY)N2i+l~O (i---)oo)

so that yftCA. This completes the proof.

Both conditions in the above proposition are required: A nonnegative
regular matrix is an RSM matrix and satisfies the first condition but
not the second. The next example is a matrix which satisfies the
second but not the first and turns out also to be an RSM.

EXAMPLE 5. Let A be given by
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A=

~- J. 1
1 1 '

-2-:-2
1 1

-3 -3

,1
1

:,2
1

-3

o
1
2
1
3

o
1
2
1
3

o
1
2
1
3

0.,..,

0 ...

1
3

1
3 0 ...

If dn is defined to be (Xl+X2+ ••• +xn) 1n~ then, for any x, the nth term
ofAx is clearly Sd3n'::"2dn.We show that, for X~O, Ax converges
to zero if and only if dn converges to ,zero. This shows that !cAlo=
10"11° (the strongly ceS3.ro summable (to zero) sequences-see [l]) and
thus m·lcAlo= ICilo., Obviously, if dn-?O, then ,Sd3n-2dn-?O. '

Now let:X~O and suppose Sd3n-2dn-?O. By the nonnegativity of X

w~obfain,-,'Jor all"iz,' that '. '

d > n d " (,*),' ,n+!- n+.l ,no ,

First suppose dn is unbounded. Choose an Nsuch that N~2 ,and, if
dn>N, then (r,-2)/n>5/6 a;nd Sd3j-2dj <1 for all j';::;'nIS. Let n be
the "first indei such that dn>N. I£n=Sp, then

"', l>;Stl3P-2dp>3dp-2dp=dp
whence

dn=d3P<l+i
dp <l<N.

If n=Sp-l, then" using~ (*),

l>~d3P-:-2dp~S.S~~l d3P- 1-2dp

>'(S. Sp-l 2)d >(~"':-2)d'= dp
Sp p 2 p 2'

'and'
d< SjJ d <~(1+'2dp )<2<N.

,n '3p-l 3P 5 S ' - ..

A similar contradiction is obtained if n=Sp-2. It follows that d n is
a bounded sequence. '.

Now let u=lim sUPndn' For any e>O, we have dn~u-(eI2) for
infinitely many n. From this and (*) we conclude that d3n~u-e for
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infinitely many n. Since dnSu+e for all large n, we have 3d3n -2dn
~3(u-e) -2(u+e) =u-5e for infinitely many n. This implies that u=°and hence that dn converges to zero.

Examples can also be found of matrices A satisfying exactly one or
none of the conditions of Proposition 8 such that A is not an RSM
matrx. The following is one such.

EXAMPLE 6. Let

1 0 1 -1 ° 0 0 0 ...
1

°
1

°
1 1 0 °...2 2 2 -2

A=
1 1 1 1 1
3 ° 3 0 3 0 3 3···

Let xEw be defined by x= (0, 0, 0,1, 0, 2, 0, 3, 0, 4,0, ... ). Then
(Ax)n=-l for all n, so that XECA and fA(:r)=-l. Hence fA is
not nonnegative and thus fA is not an RSM. Furthermore, if we let

X= (1, 1, 1, 2, 1, 3, 1, 4, 1,5, 1, 6, 1, 7, )
y= (1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 7, )

then (Ax)n=O for all n so that xE ICAlo. But y(/:CA since (AY)n=l

if n is odd and =0 if n is even. Thus m·lcAI°<;?';CA'

The previous example shows that a regular matrix which is "essen­
tially nonnegative" may still not be an RSM. Essentially nonnegative
means that limn.Ek a;;k=O. However, as is often the case with matrix
summabilities, if we restrict the domain to the bounded convergence
field, i. e., CA n m, then fA becomes an RSM. Firstly, if A is an
essentially nonnegative regular matrix and A + = (an~) (which is
nonnegative and regular), then CAnm=cA+nm andfA(x)=fA+(x) for
all xECA n m. We omit the straightforward proof.

Furthermore, we have

PROPOSITION 9. Let S be an RSM on Cs and let T be the restriction
of S to the domain CT=CS n m. Then leT 1°= les IOn m and T is an RSM.

Proof. That ICslonm:;;;; /eTlo is clear. If xE ICTlo then Ixl ECT
and T(lxl)=O. Hence x is bounded andS(lxl)=OsothatxE!cslon
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m..; Nm¥Jeta;~ !cTI O and,b6m. Then bxE,m and bXE Icslo so that
m~lc;JQ~.tc:do..: "

From proposition 9 and the re~arks preceding it we obtain" our
concluding r.es.ult. "

~ PRo;OSITioM 10. }f A 1,$ an essentially nonnegative matrix and S is the
restriction of fA to the domain cAnni, then S is an RSM.

References

1. A. R. Freedman and ].]. Sember. Densities and summability, Pacific].
Math., 95(1981), -293-305.

2. A.R. FreedJ!!:riri, L~cunarysets and the'space bs+c, ]. London Math. Soc.
(2) 31(1985) 511--516. . ,

3. A.R. FreedD1an, ·Generaliz~d limits and sequence spaces, Bull. London Math.
Soc.", 13(1981),-224-228. ~

Simon Fraser University
Bumaby, British Columbia
Canada'V5A lS6

...,... 324-




