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SOME CYCLIC GROUP ACTIONS ON HOMOTOPY SPHERES

Jin Ho Kwak anp Youne Soo Park

In [4] Orlik defined a free cyclic group action on a homotopy sphere
constructed as a Brieskorn manifold and proved the following theorem:

TuroreM. Every odd-dimensional homotopy sphere that bounds a para-
lelizable manifold admits a free Zy—action for each prime p.

On the other hand, it was shown ([3]) that there exists a free Z,-
action on a 27-1 dimensional homotopy sphere so that its orbit space
is stably parallelizable if and only if #<p. Naturally, one can ask:

Question. Does each odd dimensional homotopy sphere X12#71, n>2
that bounds a parallelizable manifold admit a free Z -action so that
its orbit space is stably parallelizable whenever »<p?

As a partial answer of the question and as a generalization of Orlik’s
theorem for 4n—3, n>2, dimensional homotopy spheres, we will show:

Main Tueorem. For >3 odd, p>n, any homotopy sphere of dimension
2n-1 that bounds a parallelizable manifold admits a free Zj—action so
that its orbit space is stably parallelizable.

To prove it, we need a generalized Brieskorn manifold. Let
n+m

fi (Zl, sy Z,H,m) =.Z_Ea',-jzj“ij, i=1,...,m
iz

be polynomials having only one critical point at the origin, where a;;
are integers greater than 1, a;; are real numbers, and »>>2. Set

V= {zcC"*™ : f;(2) =0},
V(d) =V1 N V2 NeN Vm,

and
2@ =V{(a) N§2e+™m-1
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Then, by Whitney’s theorem, V;— {0} is a smooth manifold of dimen-
sion 2(n+m) —3. This 2] (a) is called a generalized Brieskorn manifold,
and a generalized Brieskorn sphere if it is a homotopy sphere. The

gradient of f(2y, ..., 2pyp) is defined by

grad f(2) = (0f/021, «.., OF [021m)
where 9f/9z; is the complex conjugate of 9f/0z;.

For our purpose, we assume that grad fy, ..., grad f,, are linearly
independent at each point V(a) — {0}, and 2 (a) is a homotopy sphere
(of dimension 2z2—1).

Let a;; be independent of 7, say, a;;=a; for all 4,7, and assume
that the real matrix (a;;) has no zero subdeterminant. Construct a graph
G(a) as follows: G(a) has n+m vertices ay, @y, ..., Gpsn, and edge aja;
whenever the greatest common divisor (a; a;) is greater than one. Let
%, be the number of the connected components K of G(¢) such that
K has an odd number of vertices and for any two different vertices
a;, a; of K, (a;,a;)=2. Then, (by Hamm’s theorem [2]) # ,.>m implies
that 2, (a) is a topological sphere.

Let p be an odd prime, and let 3 (2) be such a topologlcal sphere
with a;;#0 (mod p). Define a free Zj-action on X (a) as follows:
Choose natural numbers b; so that q;;6;=1 (mod p) for all 4, ;. Define
an action of Z, on Z(a) by

' C(Zla eeey zn+m) = (Cbl,zls seey Cbn+mzn+m) ’
where { is a primitive p~th root of unity considered as the preferred
generator of Z,. Clearly, 3 (a) is invariant under this action. The

orbit space 2;(a)/Z, is a homotopy lens space and will be denoted by
L(p;a;b).

The stable parallelizability problem of these homotopy lens spaces was
answered as follows:

Tureorem ([3]). A 22-1 dimensional homotopy lens space L(p; a i b)
is stably parallelizable if and only if

) n<p, and L y
(2) blzj+62j"'+bn+m2j=m (mOd 1’) f07' =12, ey ['%‘(n_l) :[-
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It is well-known that the group 6P, _, of 4%—3 dimensional homo-
topy spheres which bound a parallelizable manifold is either zero or
cyclic of order two, i.e., the standard sphere and the Kervaire sphere.
Also bPy,_,, k=o0dd>3, is the cyclic group of order two, equivalently,
the Kervaire sphere is exotic.

In the given cases, i.e.,

n+m

fi (zl’ vevy zn-}-m) =§laij2jaii,
Vi=F"10), i=1,2,...,m and
Y@=VnV,Nn---NV,N82ntm"1
the following classification of the diffeomorphism classes of homotopy
spheres is useful.

Tueorem ([2]). Assume that a;;is independent of i, say a;;=a; for all
i,7 and let G(a) be the graph defined as before. If 2,(a) is a topolo-
gical sphere of dimension 2n—1, n>3 odd, then

(1) if the graph G(a) has exactly m-+1 components and the number
of one point components a; with aj=+3 (mod 8) is odd, then },(a)
is the Kervaire sphere,

(2) in all other cases, },(a) is the standard sphere.

As a necessary condition for a lens space L(p; a; b) to be stably
parallelizable, there must be a solution to the system of equations

b12j+b22j+"’+bn+m2j =m (mOd P)v =1 25 .ees {i%’(n—l):l’

over the field Z,, and the existence of their common solution comes
from the next lemma.

LemMa. Let p=>n>3 and let qz[% (n—1) :’ Then there exists at

least one common solution (Xy, Zoy ..., Ty_p) with each ;%0 in Z, to

x12+"'+xn2+"'+xn+m2=m (mOd p)’

(1) ZitF et Tt Zgymt=m (mod 2),

x12q+ e +xn2q+ o +1n+m2q=m (mOd P) ’

for some m=>1.
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- Proof. If n=p, then z;=1,=---=2,,,=1 is a solution for any m=>1.
Let n<(p, and let ¢;=1, ¢y, ..., €s_1/2 be the quadratic residue in Z,.
Since each equation in (]) is homogeneous of even order, the system
(1) can be reduced to the following system:

n+tyettyp-nse=ntm,
YiFeayat e /seYp-1n/2=m (mod p),
y1te?yat e Epn 2y p-ns2=m (mod p),

(I

yit+etyetotelpps2yp-n/2=m (mod p).

Indeed, each y; in the system () represents the number of z;'s with
z2=c¢; (mod p) in the system (1), so that the first equation in (1)
must be added. Now it is enough to show the existence of a solution
to the system (X). To do this, it can be considered as a system of
equations in the field Z,, hence it is needed to change the first equation
in (F) to the equation in Z,, i.e., '

Y1yt yp-p/a=n+m (mod p).

If the system (1) with this equation instead of its first equation, say
(I)’, has a solution, then (II) has a solution (y1, ¥ ---» Yep-13/2)
with

yntyettyop-nse=ntmtkp

for some £ By taking a sufficient large number y;, i.e., adding more
variables z; with z2=c;=1 (mod p) in the system (I), we can
assume that 2>0, and then (I) will have a solution with m--%p,

k>0 instead of m. First, consider the case of q'—l—l=~%— (p—1), then

the coeflicient matrix of the system (@)’ has a nonzero Vandermonde
determinant. So it has a solution. The remaining case of g+1<C

%( p—1) can be proved by the same method by taking
yq+2=yq+3='"=y(p—1)/2=0-

To prove the main theorem, let 3<n<p, and let by, 85 ..., byim
(m>1) be nonzeros in Z, such that
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b2 4+by2eee b, 2 =m (mod p), j=1,2, ..., [%(n——l)}

By Dirichlet’s theorem, there exist distinct prime numbers a;, @s, ..r @yim
such that a5;=1 (mod p) for j=1,2, ..., n+m. Now, one can construct
m polynomials

nt+m

fi(zl’ sey zn+m) ?"Z:laijzjaij, 2:1, 2, ey M
i=

with a;;=a; for all i and real numbers a;; chosen so that the matrix
(@;;) has no zero subdeterminent. Then, by Hamm’s theorem,

Z (d) = V1 N Vgn e N Vm nSZ(MLm)—I,
where V;=f,71(0), is a 2»—1 dimensional homotopy sphere, and
clearly grad fi, grad f, ..., grad f, are linearly independent. Hence
we have the following result: “For #>3 odd, p>n, every 2z—1
dimensional standard sphere admits a free Z,~action so that its orbit
space is stably parallelizable”. Next, we will see that it is also true
for the exotic spheres. Note that we can assume b;=b,=:--=b,=1 by
taking more polynomials if necessary. Consider a set

S= {%(2k+1)p+% : keN} - {—%A(p+1)+kp : keN}.

This set S contains infinitely many prime numbers by Dirichlet’s
theorem. Choose distinct primes gy, gs, ..., ¢, in S so that ¢;>a,,; for all
i,j. Now, take a/=2¢g;, i=1,2,...,7 so that (a/,a;) =2 for 1<i#;<

n, and ai’bi=ai’=2qi=2<—é—(p—!—1)—I—kip>=1 (mod p) for 1<i<n. Take

@', j=an.; for j=1,2,...,m. Then, the graph G(a’) has exactly m+1
components: {a,’, ay’, ..., a,’} and single components a@,.1, ..oy @ pime  If
the number of single components o’,.; with &’,,;==43 (mod 8) is odd,
then X (a’) is the Kervaire sphere. If not, we can take a,.mi1> Onims1
so that @,.,.1=3 (mod 8), and @,.,:; is a prime number greater than
all other ;s and a,.,+1=1 (mod p). Indeed, by Chinese Remainder
Theorem, z=1 (mod p) and 2=3 (mod 8) has a solution, say =z,
then zy+8pN contains infinitely many prime numbers, because (x¢, 8p)
=1. Now one can choose a sufficient large number among these primes
as @,.m.1. Clearly, by adding this number to (a;), one has a Kervaire
sphere. The remaining process is exactly the same as before. This
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proves the main theorem.
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