SOME CYCLIC GROUP ACTIONS ON HOMOTOPY SPHERES

JIN HO KWAK AND YOUNG SOO PARK

In [4] Orlik defined a free cyclic group action on a homotopy sphere constructed as a Brieskorn manifold and proved the following theorem:

Theorem. Every odd-dimensional homotopy sphere that bounds a parallelizable manifold admits a free \mathbf{Z}_p -action for each prime p.

On the other hand, it was shown ([3]) that there exists a free \mathbb{Z}_p -action on a 2n-1 dimensional homotopy sphere so that its orbit space is stably parallelizable if and only if $n \leq p$. Naturally, one can ask:

QUESTION. Does each odd dimensional homotopy sphere $\sum_{n=1}^{2n-1}$, n>2 that bounds a parallelizable manifold admit a free \mathbb{Z}_p -action so that its orbit space is stably parallelizable whenever $n \le p$?

As a partial answer of the question and as a generalization of Orlik's theorem for 4n-3, $n \ge 2$, dimensional homotopy spheres, we will show:

Main Theorem. For $n \ge 3$ odd, $p \ge n$, any homotopy sphere of dimension 2n-1 that bounds a parallelizable manifold admits a free \mathbf{Z}_p -action so that its orbit space is stably parallelizable.

To prove it, we need a generalized Brieskorn manifold. Let

$$f_i(z_1, \dots, z_{n+m}) = \sum_{i=1}^{n+m} \alpha_{ij} z_j^{a_{ij}}, i=1, \dots, m$$

be polynomials having only one critical point at the origin, where a_{ij} are integers greater than 1, a_{ij} are real numbers, and n>2. Set

$$V_i = \{z \in \mathbb{C}^{n+m} : f_i(z) = 0\},\$$

 $V(a) = V_1 \cap V_2 \cap \cdots \cap V_m,$

and

$$\sum (a) = V(a) \cap S^{2(n+m)-1}.$$

Received April 2, 1988.

This work is partially supported by KOSEF.

Then, by Whitney's theorem, $V_i - \{0\}$ is a smooth manifold of dimension 2(n+m)-3. This $\sum (a)$ is called a generalized Brieskorn manifold, and a generalized Brieskorn sphere if it is a homotopy sphere. The gradient of $f(z_1, ..., z_{n+m})$ is defined by

grad
$$f(z) = (\overline{\partial f/\partial z_1}, ..., \overline{\partial f/\partial z_{n+m}})_z$$

where $\overline{\partial f/\partial z_i}$ is the complex conjugate of $\partial f/\partial z_i$.

For our purpose, we assume that grad $f_1, ...,$ grad f_m are linearly independent at each point $V(a) - \{0\}$, and $\sum (a)$ is a homotopy sphere (of dimension 2n-1).

Let a_{ij} be independent of i, say, $a_{ij}=a_j$ for all i, j, and assume that the real matrix (a_{ij}) has no zero subdeterminant. Construct a graph G(a) as follows: G(a) has n+m vertices $a_1, a_2, ..., a_{n+m}$ and edge $\overline{a_i a_j}$ whenever the greatest common divisor (a_i, a_j) is greater than one. Let $\#_a$ be the number of the connected components K of G(a) such that K has an odd number of vertices and for any two different vertices a_i, a_j of K, $(a_i, a_i) = 2$. Then, (by Hamm's theorem [2]) $\#_a > m$ implies that $\sum (a)$ is a topological sphere.

Let p be an odd prime, and let $\sum (a)$ be such a topological sphere with $a_{ij} \neq 0 \pmod{p}$. Define a free \mathbb{Z}_p -action on $\sum (a)$ as follows: Choose natural numbers b_j so that $a_{ij}b_j=1 \pmod{p}$ for all i, j. Define an action of \mathbb{Z}_p on $\sum (a)$ by

$$\zeta(z_1, ..., z_{n+m}) = (\zeta^{b_1}z_1, ..., \zeta^{b_n+m}z_{n+m}),$$

where ζ is a primitive p-th root of unity considered as the preferred generator of \mathbf{Z}_p . Clearly, $\sum (a)$ is invariant under this action. The orbit space $\sum (a)/\mathbf{Z}_p$ is a homotopy lens space and will be denoted by L(p; a; b).

The stable parallelizability problem of these homotopy lens spaces was answered as follows:

THEOREM ([3]). A 2n-1 dimensional homotopy lens space L(p; a; b) is stably parallelizable if and only if

(1)
$$n \leq p$$
, and

(2)
$$b_1^{2j} + b^{2j} \cdots + b_{n+m}^{2j} = m \pmod{p}$$
 for $j=1, 2, ..., \left[\frac{1}{2}(n-1)\right]$.

It is well-known that the group bP_{4k-2} of 4k-3 dimensional homotopy spheres which bound a parallelizable manifold is either zero or cyclic of order two, i.e., the standard sphere and the Kervaire sphere. Also bP_{4k-2} , $k=\text{odd} \geq 3$, is the cyclic group of order two, equivalently, the Kervaire sphere is exotic.

In the given cases, i.e.,

$$f_i(z_1, ..., z_{n+m}) = \sum_{j=1}^{n+m} \alpha_{ij} z_j^{a_{ij}},$$
 $V_i = f_i^{-1}(0), i = 1, 2, ..., m \text{ and }$

$$\sum (a) = V_1 \cap V_2 \cap \cdots \cap V_m \cap S^{2(n+m)-1},$$

the following classification of the diffeomorphism classes of homotopy spheres is useful.

THEOREM ([2]). Assume that a_{ij} is independent of i, say $a_{ij}=a_j$ for all i, j and let G(a) be the graph defined as before. If $\sum (a)$ is a topological sphere of dimension 2n-1, $n \ge 3$ odd, then

- (1) if the graph G(a) has exactly m+1 components and the number of one point components a_j with $a_j = \pm 3 \pmod{8}$ is odd, then $\sum (a)$ is the Kervaire sphere,
 - (2) in all other cases, $\sum (a)$ is the standard sphere.

As a necessary condition for a lens space L(p; a; b) to be stably parallelizable, there must be a solution to the system of equations

$$b_1^{2j} + b_2^{2j} + \dots + b_{n+m}^{2j} = m \pmod{p}, \ j=1,2,..., \left[\frac{1}{2}(n-1)\right],$$

over the field \mathbf{Z}_p , and the existence of their common solution comes from the next lemma.

Lemma. Let $p \ge n \ge 3$ and let $q = \left[\frac{1}{2}(n-1)\right]$. Then there exists at least one common solution $(x_1, x_2, ..., x_{n-m})$ with each $x_i \ne 0$ in \mathbf{Z}_p to

(I)
$$\begin{cases} x_1^2 + \dots + x_n^2 + \dots + x_{n+m}^2 = m \pmod{p}, \\ x_1^4 + \dots + x_n^4 + \dots + x_{n+m}^4 = m \pmod{p}, \\ \dots \\ x_1^{2q} + \dots + x_n^{2q} + \dots + x_{n+m}^{2q} = m \pmod{p}, \end{cases}$$

for some $m \ge 1$.

Proof. If n=p, then $x_1=x_2=\cdots=x_{n+m}=1$ is a solution for any $m\geq 1$. Let n < p, and let $c_1=1, c_2, \ldots, c_{(p-1)/2}$ be the quadratic residue in \mathbb{Z}_p . Since each equation in (I) is homogeneous of even order, the system (I) can be reduced to the following system:

$$(I) \begin{cases} y_1 + y_2 + \dots + y_{(p-1)/2} = n + m, \\ y_1 + c_2 y_2 + \dots + c_{(p-1)/2} y_{(p-1)/2} = m \pmod{p}, \\ y_1 + c_2^2 y_2 + \dots + c^2_{(p-1)/2} y_{(p-1)/2} = m \pmod{p}, \\ \dots \\ y_1 + c_2^q y_2 + \dots + c^q_{(p-1)/2} y_{(p-1)/2} = m \pmod{p}. \end{cases}$$

Indeed, each y_j in the system (\mathbb{I}) represents the number of x_i 's with $x_i^2 = c_j \pmod{p}$ in the system (\mathbb{I}), so that the first equation in (\mathbb{I}) must be added. Now it is enough to show the existence of a solution to the system (\mathbb{I}). To do this, it can be considered as a system of equations in the field \mathbb{Z}_p , hence it is needed to change the first equation in (\mathbb{I}) to the equation in \mathbb{Z}_p , i.e.,

$$y_1 + y_2 + \cdots + y_{(p-1)/2} = n + m \pmod{p}$$
.

If the system (\mathbb{I}) with this equation instead of its first equation, say (\mathbb{I})', has a solution, then (\mathbb{I}) has a solution ($y_1, y_2, ..., y_{(p-1)/2}$) with

$$y_1 + y_2 + \cdots + y_{(p-1)/2} = n + m + kp$$

for some k. By taking a sufficient large number y_1 , i.e., adding more variables x_j with $x_j^2 = c_1 = 1 \pmod{p}$ in the system (I), we can assume that $k \ge 0$, and then (I) will have a solution with m + kp, $k \ge 0$ instead of m. First, consider the case of $q+1=\frac{1}{2}(p-1)$, then the coefficient matrix of the system (I)' has a nonzero Vandermonde determinant. So it has a solution. The remaining case of $q+1 < \frac{1}{2}(p-1)$ can be proved by the same method by taking

$$y_{q+2} = y_{q+3} = \cdots = y_{(p-1)/2} = 0.$$

To prove the main theorem, let $3 \le n \le p$, and let $b_1, b_2, ..., b_{n+m}$, $(m \ge 1)$ be nonzeros in \mathbb{Z}_p such that

Some cyclic group actions on homotopy spheres

$$b_1^{2j} + b_2^{2j} \cdots + b_{n+m}^{2j} = m \pmod{p}, \ j=1, 2, ..., \left\lceil \frac{1}{2} (n-1) \right\rceil.$$

By Dirichlet's theorem, there exist distinct prime numbers $a_1, a_2, ..., a_{n+m}$ such that $a_jb_j=1 \pmod{p}$ for j=1, 2, ..., n+m. Now, one can construct m polynomials

$$f_i(z_1, ..., z_{n+m}) = \sum_{j=1}^{n+m} \alpha_{ij} z_j^{a_{ij}}, i=1, 2, ..., m$$

with $a_{ij}=a_j$ for all i and real numbers α_{ij} chosen so that the matrix (α_{ij}) has no zero subdeterminent. Then, by Hamm's theorem,

$$\sum (a) = V_1 \cap V_2 \cap \cdots \cap V_m \cap S^{2(n+m)-1},$$

where $V_i=f_i^{-1}(0)$, is a 2n-1 dimensional homotopy sphere, and clearly grad f_1 , grad f_2 ,..., grad f_m are linearly independent. Hence we have the following result: "For $n\geq 3$ odd, $p\geq n$, every 2n-1 dimensional standard sphere admits a free \mathbb{Z}_p -action so that its orbit space is stably parallelizable". Next, we will see that it is also true for the exotic spheres. Note that we can assume $b_1=b_2=\cdots=b_n=1$ by taking more polynomials if necessary. Consider a set

$$S = \left\{ \frac{1}{2} (2k+1) p + \frac{1}{2} : k \in \mathbb{N} \right\} = \left\{ \frac{1}{2} (p+1) + kp : k \in \mathbb{N} \right\}.$$

This set S contains infinitely many prime numbers by Dirichlet's theorem. Choose distinct primes $q_1, q_2, ..., q_n$ in S so that $q_i > a_{n+j}$ for all i, j. Now, take $a_i' = 2q_i$, i = 1, 2, ..., n so that $(a_i', a_j) = 2$ for $1 \le i \ne j \le n$

n, and
$$a_i'b_i = a_i' = 2q_i = 2(\frac{1}{2}(p+1) + k_ip) = 1 \pmod{p}$$
 for $1 \le i \le n$. Take

 $a'_{n+j}=a_{n+j}$ for j=1, 2, ..., m. Then, the graph G(a') has exactly m+1 components: $\{a_1', a_2', ..., a_n'\}$ and single components $a'_{n+1}, ..., a'_{n+m}$. If the number of single components a'_{n+j} with $a'_{n+j}=\pm 3 \pmod 8$ is odd, then $\sum (a')$ is the Kervaire sphere. If not, we can take a_{n+m+1}, b_{n+m+1} so that $a_{n+m+1}=3 \pmod 8$, and a_{n+m+1} is a prime number greater than all other a_i 's and $a_{n+m+1}=1 \pmod p$. Indeed, by Chinese Remainder Theorem, $x=1 \pmod p$ and $x=3 \pmod 8$ has a solution, say x_0 , then x_0+8pN contains infinitely many prime numbers, because $(x_0,8p)=1$. Now one can choose a sufficient large number among these primes as a_{n+m+1} . Clearly, by adding this number to (a_i) , one has a Kervaire sphere. The remaining process is exactly the same as before. This

Jin Ho Kwak and Young Soo Park

proves the main theorem.

References

- 1. Brieskorn E., Beiespiele zur Differential-Topologie von Singularitäten, Inventiones Math. 2(1966), 1-14.
- 2. Hamm H. A., Exotische Sphären als Umgebungsränder in speziellen Komplexen Räumen, Math. Ann. 197(1972), 44-56.
- 3. Kwak J.H., The stable parallelizability of a smooth homotopy lens space, J. of Pure and Applied Algebra 50(1988), 155-169.
- 4. Orlik P., Smooth homotopy lens spaces, Michigan Math. J. 16(1969), 245-255.

POSTECH
Pohang 790-600, Korea
and
Kyungpook University
Taegu 702-701, Korea