A NOTE ON THE QUOTIENT RING R((X))OF THE POWER SERIES RING R[[X]]

Joong-Ho Kim

In this paper all rings are assumed to be commutative and contain identities. Let R[X] be the polynomial ring in an indeterminate X over a ring R. Let S be the set of all elements

 $a_0+a_1x+...+a_nx^n$ of R[X] such that $R=(a_0, a_1, \dots, a_n)$. Denote the quotient ring $S^{-1}R[X]$ by R(X). Then we have the following well known results, (see [3][4]).

- (a) If $\{M_{\beta}\}_{\beta\in B}$ is the set of maximal ideals of R then $S=R[X]-\bigcup_{\beta\in B}M_{\beta}[X]$.
- (b) S is a multiplicative system in R[X] consisting entirely of regular elements in R[X].
- (c) If Q is a P-primary ideal of R then QR(X) is a PR(X)-primary ideal of R(X) and $QR(X) \cap R = Q$.
- (d) If $\{M_{\beta}\}_{\beta\in B}$ is the set of maximal ideals of R then $\{M_{\beta}R(X)\}_{\beta\in B}$ is the set of maximal ideals of R(X).

To get the analogous results in the formal power series ring R[[X]], we choose T be the set of all $f = \sum_{i=0}^{\infty} a_i X^i \in R[[X]]$ such that $A_f = R$ where A_f is the ideal of R generated by the coefficients of $f: A_f = (a_0, a_1, a_2, \cdots)$. Then T is a multiplicative system in R[[X]]. Denote the quotient ring $T^{-1}R[[X]]$ by R((X)). But the following example in [2] indicates that there may exist an element f of R[[X]] such that f has a unit coefficient but f is a zero divisor in R[[X]].

Example. Let A be a commutative ring with identity; let $\{Y, X_0, X_1, X_2, \dots, X_i, \dots\}$ be a set of indeterminates over A; and let $R = A[Y, \{X_i\}_{i=0}^{\infty}]/(X_0Y, \{X_i - X_{i+1}Y\}_{i=0}^{\infty})$.

Let $y=\overline{Y}$ and $f=y-X\in R[[X]]$. Then f has a unit coefficient

Received February 20, 1988.

so $f \in T$. However, letting $x_i = \overline{X}_i$ and $g = \sum_{i=0}^{\infty} x_i X^i$, we see that $f \cdot g = 0$ while $g \neq 0$.

In the following theorem we will show that if R is a Noetherian ring then T consists entirely of regular elements in R[X] and the properties (a)-(d) mentioned above can be extended to R(X).

Theorem 1. Let R be a Noetherian ring with an identity and R[[X]] the power series ring in an indeterminate X over R and T the set of all $f \in R[[X]]$ such that $A_f = R$, then

- (a) T is a multiplicative system in R[[X]] consisting entirely of regular elements in R[[X]] and $T=R[[X]]-\bigcup_{\beta\in B}M_{\beta}[[X]]$ where $\{M_{\dot{\beta}}\}_{\beta\in B}$ is the set of maximal ideals of R.
- (b) If Q is a P-primary ideal of R then QR((X)) is a PR((X))-primary ideal of R((X)) and $QR((X)) \cap R = Q$.
- (c) If $\{M_{\beta}\}_{\beta\in B}$ is the set of maximal ideals of R then $\{M_{\beta}R((X))\}_{\beta\in B}$ is the set of maximal ideals of R((X)).

Proof. (a) If $f \in R[[X]]$, then $A_f = R$ if and only if $A_f \notin M_\beta$ for each $\beta \in B$. Consequently, $T = R[[X]] - (\bigcup_{\beta \in B} M_\beta[[X]])$. Since R is a Noetherian ring, an element f of R[[X]] is a zero divisor if and only if there is a nonzero element c of R such that $c \cdot f = 0$, [2]. Therefore, no element of T is a zero divisor in R[[X]]. Clearly T is a multiplicative system in R[[X]] since $T = R[[X]] - \bigcup_{\beta \in B} M_\beta[[X]]$.

In order to prove (b) we shall need the following lemma.

Lemma. If R is a Noetherian ring and Q is a P-primary ideal of R, then QR[[X]] is a PR[[X]]-primary ideal of R[[X]].

Proof. To prove that QR[[X]] is PR[[X]]-primary, it suffices, by passage to R[[X]]/Q[[X]], to prove for the case where Q=(0). So suppose that (0) is P-primary. Let $f, g \in R[[X]]$ such that $f \cdot g = 0$ and $f \neq 0$. Then there exists a nonzero element c in R such that cg=0. Then $cA_g=(0)$. Therefore, since (0) is P-primary, it follows that $A_g \subseteq P$; that is, $g \in P[[X]]$. Note that P[[X]] = PR[[X]] since R is a Noetherian ring. Clearly P[[X]] is a prime ideal of R[[X]].

Let $\sum_{i=0}^{\infty} a_i X^i \in P[[X]]$, then a_i is nilpotent for each $i=0, 1, 2, \dots$, since

(0) is P-primary. Since R is Noetherian, $\sum_{i=0}^{\infty} a_i X^i$ is a nilpotent element in R[[X]]; therefore, Rad (R[[X]] = P[[X]]. Thus (0) is a P[[X]]-primary ideal of R[[X]].

Proof of (b). Suppose that Q is P-primary, then QR[[X]] is PR [[X]]-Primary by Lemma. Then QR((X)) is PR((X))-primary since R((X)) is a quotient ring of R[[X]]. Clearly, $QR[[X]] \cap R = Q$ and $QR[[X]] \subseteq QR((X)) \cap R[[X]]$. Let $f \in QR((X)) \cap R[[X]]$, then there exists g in T such that $fg \in QR[[X]]$. Then $A_g = R$ and A_g is a cancillation ideal of R. Therefore, $A_f = A_f A_g = A_{fg} \subseteq Q$; that is, $f \in QR[[X]]$ and QR((X))

Therefore, $A_f = A_f A_g = A_{fg} \subseteq Q$; that is, $f \in QR[[X]]$ and $QR((X)) \cap R[[X]] \subseteq QR[[X]]$. It follows that $QR((X)) \cap R[[X]] = QR[[X]]$ and $QR((X)) \cap R = QR[[X]] \cap R = Q$.

Proof of (c). Let C be an ideal of R[[X]] which is contained in $\bigcup_{\beta \in B} M_{\beta}[[X]]$. Let E be the set of all elements of R which appear as coefficients of some member of C. It is easy to check that E is an ideal of R. Since $C \subseteq \bigcup_{\beta \in B} M_{\beta}[[X]]$, we see that $1 \notin E$ and so E is a proper ideal of R; therefore, $E \subseteq M_{\beta}$ for some β . Then it turned out that $C \subseteq M_{\beta}[[X]]$ and $\{M_{\beta}R((X))\}_{\beta \in B}$ is the set of maximal ideals of R((X)) (By proposition (4.8) in [3]).

Recently Al-Ezeh [1] discovered the following theorem.

THEOREM 2. Let R[X] be the polynomial ring in X over a ring R. Then R[X] is a P. F. ring (a P. P. ring) if and only if R is a P. F ring (a. P. P. ring).

DEFINITION. A ring R is called a P. F. ring if every principal ideal of R is a flat R-module. A ring R is called a P. P. ring if every principal ideal of R is a projective R-module.

DEFINITION. An ideal I of a ring R is called pure if for each element x in I, there exists an element y in I such that xy=x.

To prove Theorem 2, Al-Ezeh introduced the following several propositions as lemmas and theorems in [1].

PROPOSITION 1. A ring R is a P. F. ring if and only if for each $a \in R$, ann(a) is a pure ideal.

Proposition 2. If $I_1, I_2, ..., I_n$ are pure ideals in R, then $\bigcap_{j=1}^n I_j$ is a pure ideal of R.

PROPOSITION 3. If R is a P.F. ring, then R has no nonzero nilpotent element.

PROPOSITION 4. Let R be a ring without nilpotent elements and let $h(X) = \sum_{i=0}^{n} h_i X^i \in R[X]$. If $\sum_{i=0}^{m} a_i X^i \in ann(h(X))$, then $a_i h_j = 0$ for each $i=1, \dots, m$ and $j=1, \dots, n$.

Proposition 5. Let R be a ring and $a \in R$. Then aR is a projective R-module if and only if the annihilator, ann(a), is generated by an idempotent element.

Using proposition 1 and 5, we can easily show that if R is a P.F. (P.P.) ring then R(X) is a P.F. (P.P.) ring. We can extend this result to the ring R(X) if R is a Noetherian ring.

THEOREM 3. Let R be a Noetherian ring. Then R is a P.F. ring if and only if R[[X]] is a P.F. ring.

Proof. Suppose R is a P. F. ring. Let $h = \sum_{i=0}^{\infty} h_i X^i \in R[[X]]$ and let $f = \sum_{i=0}^{\infty} a_i X^i \in \text{ann}(h)$. Since R has no nonzero nilpotent element, $a_i h_j = 0$ for each $i = 0, 1, 2, \cdots$ and $j = 0, 1, 2, \cdots$. Note that proposition 4 holds when R[X] is replaced by R[[X]]. Consider the ideals A_f and A_h of R. Since R is Noetherian, A_f and A_h are finitely generated, say $A_f = (a_0, a_1, \dots, a_m)$ and $A_h = (h_0, h_1, \dots, h_n)$. Then $a_i \in J = \bigcap_{j=0}^{\infty} a_{j} n_{j} n_{j$

A note on the quotient ring R((X)) of the power series ring R[[X]] structed this element c in the proof of theorem 2.

First,
$$a_0b_0=a_0$$
. Consider (a_0+a_1X) $(b_0+b_1-b_1b_0)$
 $=a_0b_0+a_0b_1-a_0b_0b_1+a_1b_0X+a_1b_1X-a_1b_0b_1X$
 $=a_0+a_0b_1-a_0b_1+a_1b_0X+a_1X-a_1b_0X=a_0+a_1X$.
Let $c_1=b_0+b_1-b_0b_1$. Then $(a_0+a_1X+a_2X^2)$ $(c_1+b_2-b_2c_1)$
 $=(a_0+a_1X)c_1+(a_0+a_1X)$ $(1-c_1)b_2+a_2X^2$ $(c_1+b_2-b_2c_1)$
 $=a_0+a_1X+a_2c_1X^2+a_2b_2X^2-a_2b_2c_1X^2$
 $=a_0+a_1X+a_2c_1X^2+a_2X^2-a_2c_1X^2=a_0+a_1X+a_2X^2$.
Let $c_2=c_1+b_2-b_2c_1$, ..., $c_m=c_{m-1}+b_m-c_{m-1}b_m$.
Suppose $(a_0+a_1X+\cdots+a_kX^k)c_k=(a_0+a_1X+\cdots+a_kX^k)$. Then

Suppose $(a_0 + a_1X + \cdots + a_kX)c_k - (a_0 + a_1X + \cdots + a_kX)$. The $(a_0 + a_1X + \cdots + a_kX^k + a_{k+1}X^{k+1})c_{k+1}$ $= (a_0 + a_1X + \cdots + a_kX^k + a_{k+1}X^{k+1})(c_k + b_{k+1} - c_kb_{k+1})$ $= (a_0 + a_1X + \cdots + a_kX^k)c_k + (a_0 + a_1X + \cdots + a_kX^k)$ $\cdot (b_{k+1} - c_kb_{k+1}) + a_{k+1}X^{k+1}(c_k + b_{k+1} - c_kb_{k+1})$ $= (a_0 + a_1X + \cdots + a_kX^k) + a_{k+1}c_kX^{k+1} + a_{k+1}b_{k+1}X^{k+1}$ $- a_{k+1}b_{k+1}c_kX^{k+1} = a_0 + a_1X + \cdots + a_kX^k + a_{k+1}X^{k+1}$

Therefore, $(a_0+a_1X+\cdots+a_mX^t)c_t=a_0+a_1X+\cdots+a_mX^t$ for each $t=0,1,\cdots,m$. Let $c=c_m$, then clearly $c\in J=\bigcap_{j=0}^n \operatorname{ann}(h_j)$ and $a_0c=a_0$, $a_1c=a_1c=a_1,\cdots,a_mc=a_m$. Since $A_f=(a_0,a_1,\cdots,a_m)$, it follows that ac=a for any $a\in A_f$. Hence cf=f; therefore, $\operatorname{ann}_{R[[X]]}(h)$ is a pure ideal of R[[X]] and R[[X]] is a P. F. ring.

Conversely, assume R[[X]] is a P.F. ring. Let $a \in R$ and $b \in \underset{R}{\operatorname{ann}}(a)$. Then $b \in \underset{R[[X]]}{\operatorname{ann}}(a)$. Since R[[X]] is a P.F. ring, there exists $g = \sum_{i=0}^{\infty} c_i x^i$ in $\underset{R}{\operatorname{ann}}(a)$ such that bg = b. Then $bc_0 = b$ and $c_0 \in \underset{R}{\operatorname{ann}}(a)$. Hence $\underset{R}{\operatorname{ann}}(a)$ is a pure ideal of R and R is a P.F. ring.

THEOREM 4. Let R be a Noetherian ring then R is a P.P. ring if and only if R[[X]] is a.P.P. ring.

Proof. Suppose that R is a P.P. ring. Let $h = \sum_{i=0}^{\infty} h_i x^i \in R[[X]]$ and $f = \sum_{i=0}^{\infty} a_i x^i \in \operatorname{ann}(h)$. Since R has no nonzero nilpotent element, $a_i h_j = 0$ for each $i = 0, 1, 2, \cdots$ and $j = 0, 1, 2, \cdots$. Since R is Noetherian, A_h is

Joong-Ho Kim

finitely generated, say $A_h = (h_0, h_1, \dots, h_n)$. Let $N = \operatorname{ann}(h_0, h_1, \dots, h_n)$, then $a_i \in N$ for each $i = 0, 1, 2, \dots$. Therefore, $f \in N[[X]]$ and $\operatorname{ann}(h)$ $\subseteq N[[X]]$. If $g = \sum_{i=0}^{\infty} b_i x^i \in N[[X]]$ then $A_g \subseteq N = \operatorname{ann}(A_h)$; therefore, $g \in \operatorname{ann}(h)$. Hence $\operatorname{ann}(h) = N[[X]]$ and $N = \operatorname{ann}(h_0, h_1, \dots, h_n) = \bigcap_{j=0}^{n} \operatorname{ann}(h_j)$. Since R is a P. P. ring, $\operatorname{ann}(h_j) = e_j R$ for each $j = 0, 1, \dots, n$ where e_j is an idempotent element. Then $N = \bigcap_{j=0}^{n} e_j R = (e_1 e_2 \dots e_n) R = e R$ where $e = e_1 e_2 \dots e_n$ is an idempotent element. Therefore, $\operatorname{ann}(h) = e R[[X]]$, i. e. $\operatorname{ann}(h)$ is generated by an idempotent element e, hence R[[X]] is a P. P. ring.

Conversely, suppose that R[[X]] is a P.P. ring. Let $a \in R$. Then $\underset{R[[X]]}{\operatorname{ann}}(a) = gR[[X]]$ for some $g \in R[[X]]$ such that $g^2 = g$. If $g = \sum_{i=0}^{\infty} b_i X^i$ then $b_0^2 = b_0$ and $ab_0 = 0$. Let $b \in \underset{R}{\operatorname{ann}}(a)$, then ba = 0. Then, $b \in \underset{R[[X]]}{\operatorname{ann}}(a)$ so $b \in gR[[X]]$ and $b = b_0 c$ for some $c \in R$. Hence $\underset{R}{\operatorname{ann}}(a) \subseteq b_0 R$. To show the opposite inclusion, let $d \in b_0 R$. Then $d = b_0 d_0$ for some $d_0 \in R$. Since $b_0 \in \underset{R}{\operatorname{ann}}(a)$, $d \in \underset{R}{\operatorname{ann}}(a)$; therefore, $\underset{R}{\operatorname{ann}}(a) \supseteq b_0 R$ so $\underset{R}{\operatorname{ann}}(a) = b_0 R$. Thus R is a P.P. ring.

COROLLARY 5. Let R be a Noetherian ring. Then R is a P.F. ring (a P.P. ring) if and only if R((X)) is a P.F. ring (a P.P. ring).

References

- 1. H. Al-Ezeh, On some properties of the polynomial rings, Internat. J. Math. & Math. Science 10(1987), 311-314.
- 2. D. Fields, Zero divisor and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27(1971), 427-433.
- 3. R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, (1972).
- 4. M. Larsen and P. McCarthy, *Multiplicative theory of ideals*, Academic Press, New York and London, (1971).

A note on the quotient ring R((X)) of the power series ring R[[X]]

East Carolina University Greenville, North Carolina 27858 U. S. A.