FUBINI PRODUCTS OF LIMINAL C*-ALGEBRAS WITH HAUSDORFF SPECTRA

SEUNG-HYEOK KYE

1. Introduction.

Let A and B be C^* -algebras and $A \otimes B$ denote the minimal tensor product of A and B. After Tomiyama [11] introduced the notion of Fubini product $A \otimes_F B$ of A and B, it has been proved to be useful to study some pathological properties of minimal tensor products [1, 4, 8, 12, 13]. Tomiyama [11] also proved that if A is subhomogeneous, that is, every irreducible representation of A is finite dimensional with bounded dimension, then A isa C^* -algebra with trivial Fubini products, i. e., $A \otimes_F B = A \otimes B$ for all C^* -algebra B.

By using the techniques of Wassermann [12, 13], Huruya [5] gave an example of C^* -algebra whose irreducible representations are all finite-dimensional but which has a nontrivial Fubini product. So, it is only natural to consider the converse of Tomiyama's result. In this vein, the author [9] showed that the converse is true for AF C^* -algebras. The purpose of this note is to prove the converse of the Tomiyama's result for the class of liminal C^* -algebras with Hausdorff spectra.

The structures of liminal C^* -algebras with Hausdorff spectra are well understood through the theory of continuous fields of C^* -algebras, and we follow Dixmier's book [3] for the related notations and terminologies. Also, $\mathcal{E}(\mathcal{H})$ (respectively $\mathcal{K}(\mathcal{H})$) denotes the C^* -algebra of all bounded linear (respectively compact) operators on the seperable Hilbert space \mathcal{H} , throughout this note.

In Section 2, we review definitions and some basic properties of Fubini products. Section 3 is devoted to an extension of Kirchberg's result [7] on exact C^* -algebras, which will be useful for the proof of the main theorem in the last section.

Received October 23, 1987.

Partially supported by Korea Sciences and Engineering Foundation 1985-87.

2. Preliminaries.

To begin with, let us recall the definition of Fubini product. Let A, B, C and D be C^* -algebras with $A \subseteq C$ and $B \subseteq D$. For $\phi \in C^*$ (respectively $\phi \in D^*$), there exists a unique bounded linear map (called the slice map) $R_{\phi}: C \otimes D \to D$ (respectively $L_{\phi}: C \otimes D \to C$) such that $R_{\phi}(c \otimes d) = \phi(c) d$ (respectively $L_{\phi}(c \otimes d) = \phi(d) c$) for $c \in C$ and $d \in D$. The Fubini product $F(A, B, C \otimes D)$ of A and B with respect to $C \otimes D$ is defined by

$$F(A, B, C \otimes D) = \{x \in C \otimes D ; R_{\phi}(x) \in B, L_{\phi}(x) \in A \text{ for all } \phi \in C^*, \phi \in D^*\}.$$

Let A and B be fixed C^* -algebras. Although the Fubini products $F(A, B, C \otimes D)$ of A and B depend on $C \otimes D$, they are all isomorphic and constitute the largest among them if C^* -algebras C and D are injective [5]. We denote by $A \otimes_F B$ any one of these isomorphic Fubini products of A and B.

Let M_n denote the C^* -algebra of all $n \times n$ matrices over complex field, and M (respectively M_0) be the l^{∞} -sum (respectively c_0 -sum) of the family $\{M_n\}$ of C^* -algebras. That is,

$$M = \{(x_n) \in \prod_{n=1}^{\infty} M_n ; \sup ||x_x|| < \infty \}$$

$$M_0 = \{(x_n) \in \prod_{n=1}^{\infty} M_n ; \lim ||x_n|| = 0 \}.$$

Then M_o is just the example of Huruya [5] mentioned in the introduction:

$$\mathcal{B}(\mathcal{H}) \otimes M_o \subseteq F(\mathcal{B}(\mathcal{H}), M_o, \mathcal{B}(\mathcal{H}) \otimes M)$$
.

The following two lemmas deal with C^* -subalgebras and C^* -quotients for Fubini products in some special cases, which are useful for our main theorem.

Lemma 2.1. Let A and C be nuclear C^* -algebras with $A \subseteq C$. If C is a C^* -algebra with trivial Fubini products, then so is A.

Proof. See [9, Lemma 3.1].

Lemma 2.2. Let $\alpha: D \rightarrow E$ be a surjective *-homomorphism between C*-algebras and B be a C*-subalgebra of D. If A is a C*-algebra then we have

$$(2.1) (1_A \otimes \alpha) (F(A, B, A \otimes D)) \subseteq F(A, \alpha(B), A \otimes E).$$

Furthermore, if $Ker \alpha \subseteq B$ then the equality holds in (2.1).

Proof. If $z \in F(A, B, A \otimes D)$ then $R_{\phi}((1_A \otimes \alpha)(z)) = \alpha(R_{\phi}(z)) \in \alpha(B)$ for all $\phi \in A^*$. So, we have $(1_A \otimes \alpha)(z) \in F(A, \alpha(B), A \otimes E)$. For the converse, let $w \in F(A, \alpha(B), A \otimes E)$. Then we can find $z \in A \otimes D$ such that $(1_A \otimes \alpha)(z) = w$. Now,

$$\alpha(R_{\phi}(z)) = R_{\phi}((1_A \otimes \alpha)(z)) = R_{\phi}(w) \in \alpha(B)$$

for all $\phi \in A^*$. So, $R_{\phi}(z) \in B + \operatorname{Ker} \alpha = B$ for all $\phi \in A^*$, and $z \in F(A, B, A \otimes D)$. Hence, $w = (1_A \otimes \alpha) (z) \in (1_A \otimes \alpha) (F(A, B, A \otimes D))$.

3. Exact C^* -algebras.

Now, we recall that a C^* -algebra A is C^* -exact if

$$A \otimes J = F(A, J, A \otimes B)$$

for every C^* -algebra B and its two-sided norm-closed ideal J. Note that the Fubini product $F(A, J, A \otimes B)$ of the right side is just the kernel of the *-homomorphism $A \otimes B \rightarrow A \otimes (B/J)$ in general. In the literature [2, 7], one can find several conditions which are equivalent to C^* -exactness in terms of Fubini product. Especially, Kirchberg [7, Theorem 1.1] showed that if

$$A \otimes \mathcal{K}(\mathcal{H}) = F(A, \mathcal{K}(\mathcal{H}), A \otimes \mathcal{B}(\mathcal{H}))$$

then A is C^* -exact.

Let E_n be a fixed C^* -algebra which admits a finite-dimensional irreducible representation with dimension larger than or equal to n, for n=1,2,..., and denote by E (respectively E_0) the l^∞ -sum (respectively c_0 -sum) of $\{E_n : n=1,2,...\}$, throughout this section. We show that $\mathcal{B}(\mathcal{H})$ (respectively $\mathcal{K}(\mathcal{H})$) can be replaced by E (respectively E_0) in the above mentioned Kirchberg's result.

Lemma 3.1. Let A be a C*-algebra and $x \in A \otimes M_n$. Then for any $\varepsilon > 0$, there exist a completely positive contraction $W: M_n \to E_n$ such that

$$||(1_A \otimes W)(x)|| > ||x|| - \varepsilon.$$

Proof. By [6, Lemma 2] (see also [10, Lemma 2.7]), there exist completely positive contractions $W: M_n \rightarrow E_n$ and $V: E_n \rightarrow M_n$ such that

$$||VW-id||_{cb} < \frac{\varepsilon}{||x||}.$$

Then, we have

$$\|(\mathbf{1}_A \otimes V)(\mathbf{1}_A \otimes W)(x) - x\| < \varepsilon$$

and it follows that

$$||x|| - \varepsilon < ||(1_A \otimes V)(1_A \otimes W)(x)|| \le ||(1_A \otimes W)(x)||.$$

LEMMA 3.2. Let A and B be C*-algebras and $s \in A \otimes B$. Then, we have

(3.1)
$$||s|| = \sup \{ ||(1_A \otimes V)(s)|| ; V \text{ is a completely positive contraction from } B \text{ to } E_n, n=1, 2, ... \}.$$

Proof. Let $\varepsilon > 0$ be given. For a completely positive contraction $V: B \rightarrow M_n$ we can choose, by Lemma 3.1, a completely positive contraction $W: M \rightarrow E_n$ such that

$$\|(1_A \otimes W)(1_A \otimes V)(s)\| \ge \|(1_A \otimes V)(s)\| - \varepsilon.$$

Now, $WV: B \rightarrow E_n$ is a completely positive contraction and we have

$$||(1_A \otimes WV)(s)|| \ge ||(1_A \otimes V)(s)|| - \varepsilon.$$

Hence, the right side of (3.1) is larger than or equal to

$$||s|| = \sup \{||(1_A \otimes V)(s)||; V \text{ is a completely positive contraction from } B \text{ to } M_n, n=1, 2, ...\},$$

which is the equality proved in [7, Lemma 2.3].

In order to follow the proof of [7, Theorem 1.1], we adopt all notations in [7] such as m(B), $c_0(b)$ and p_n . Let S be the set of all completely positive contractions V from m(B) into E such that $V(c_0(B)) \subseteq E_0$.

Theorem 3.3. Let A be a C^* -algebra. Then, A is C^* -exact if and only if

$$F(A, E_0, A \otimes E) = A \otimes E_0.$$

Proof. The arguments of [7] go well except that of [7, Lemma 2.3], for which we will give the following substitute:

LEMMA 3.4. Let $t \in A \otimes m(B)$. Then we have

- i) $t \in A \otimes c_0(B)$ if and only if $(1_A \otimes V)(t) \in A \otimes E_0$ for every $V \in S$.
- ii) $t \in F(A, c_0(B), A \otimes m(B))$ if and only if $(1_A \otimes V)(t) \in F(A, E_0, A \otimes E)$ for every $V \in S$.

Proof. Assume that $t \in A \otimes m(B) \setminus A \otimes c_0(B)$. Then, there exists a strictly increasing sequence $\{\nu(n) : n=1, 2, ...\}$ such that $\|(1_A \otimes p_{\nu(n)})(t)\| > 2\varepsilon$, for all n=1, 2, ... So, by Lemma 3.2, there exists completely positive contractions $V_n : B \to E_{\nu(n)}$ such that

$$||(1_A \otimes V_n) (1_A \otimes p_{\nu(n)}) (t)|| > \varepsilon$$

for all n=1, 2, ... If we define $V: m(B) \rightarrow E$ by

$$V(b_1, b_2, ...) = (0, ..., 0, V_1(b_{\nu(1)}), 0, ..., 0, V_2(b_{\nu(2)}), ...),$$

where each $V_n(b_{\nu(n)})$ is in the $\nu(n)$ -th position, then $V \in S$.

Let π_n ; $E \to E_n$ denote the projection onto the *n*-th component. Then, every $s \in A \otimes E_0$ satisfies $\lim_{n \to 0} || (1_A \otimes \pi_n)(s) || = 0$. But, we have

$$\|(1_A \otimes \pi_{\nu(n)}) (1_A \otimes V) (t)\| = \|(1_A \otimes V_n) (1_A \otimes p_{\nu(n)}) (t)\| \ge \varepsilon$$

for all n=1, 2, ..., which shows that $(1_A \otimes V)(t) \in A \otimes E \setminus A \otimes E_0$. The remaining statements are easy.

4. Main Result.

Throughout the remainder of this note, let A denote a liminal C^* -algebra with Hausdorff spectrum T, and $A = ((A(t)_{t \in T}, \Gamma)$ be the continuous field of C^* -algebras defined by A. Then, by [3, Theorem 10.5.4], we have

$$A \cong \{x \in \Gamma ; \lim_{t \to \infty} ||x(t)|| = 0\}.$$

THEOREM 4.1. Let A be a liminal C^* -algebra with Hausdorff spectrum. Then, A is a C^* -algebra with trivial Fubini products if and only if A is subhomogeneous.

Proof. It suffices to prove the necessity. To do this, we assume that A is not subhomogeneous and show that A has a nontrival Fubini product. We consider the following two cases:

Case I: A has an infinite-dimensional irreducible representation.

In this case, we have $A(t_0) = \mathcal{K}(\mathcal{H})$ for some $t_0 \in T$. Define $\tilde{A}(t) = A(t)$ for $t \neq t_0$ and $\tilde{A}(t_0) = \mathcal{E}(\mathcal{H})$. Let Λ be the set of $y \in \prod_{t \in T} \tilde{A}(t)$ such that $t \mapsto \|y(t)\|$ is continuous on T and y coincides to some $x \in \Gamma$ on the set $T \setminus \{t_0\}$. Then, there exists a unique subset $\tilde{\Gamma}$ of $\prod_{t \in T} \tilde{A}(t)$ containing Λ such that $\mathcal{A} = (\tilde{A}(t), \tilde{\Gamma})$ is a continuous field of C^* -algebras on T. Put

$$\tilde{A} = \{x \in \tilde{\Gamma} ; \lim_{t \to \infty} ||x(t)|| = 0\}.$$

Then, A is naturally embedded in \tilde{A} . We define $\alpha: \tilde{A} \to \mathcal{E}(\mathcal{X})$ by $\alpha(y) = y(t_0)$ for $y \in \tilde{A}$. Then α is surjective and $\alpha(A) = \mathcal{K}(\mathcal{X}) \subseteq \mathcal{E}(\mathcal{X})$. Furthermore Ker $\alpha \subseteq A$. So, we have

 $(1_A \otimes \alpha) (F(\mathcal{R}(\mathcal{H}), A, \mathcal{R}(\mathcal{H}) \otimes \tilde{A}) = F(\mathcal{R}(\mathcal{H}), \alpha(A), \mathcal{R}(\mathcal{H}) \otimes \mathcal{R}(\mathcal{H})).$

by Lemma 2.2. But, we know that the Fubini product of the right side is nontrivial [13, Theorem 8], which implies that A also has a nontrivial Fubini product in the left side.

Case II: Every irreducible representation of A is finite-dimensional.

We can write $T = \bigcup_{n=1}^{\infty} T(n)$, where T(n) is the set of all irreducible representations whose dimensions are less than or equal to n. Then T(n) is closed [3, Proposition 3.6.3] and T is of second category because T is locally compact [3, Corollary 3.3.8]. Now, it is easy to see that there exist a strictly increasing sequence $\{n_i\}$ of natural numbers and sequences $\{V_i\}$ of open subsets in T such that $V_i \subset T(n_i) \setminus T(n_i-1)$.

Put $S = \bigcup_{i=1}^{\infty} V_i$, and let $\mathcal{A}|_{V_i} = ((A(t)_{t \in V_i}, \Gamma_{V_i}))$ and $\mathcal{A}|_{S} = (A(t)_{t \in S_i}, \Gamma_{S_i})$ be the continuous fields induced on $V_i(i=1, 2, ...)$ and S_i , respectively. Define

$$E_{i} = \{x \in \Gamma_{V_{i}} ; \lim_{t \to \infty} ||x(t)|| = 0$$

$$E_{0} = \{x \in \Gamma_{S} ; \lim_{t \to \infty} ||x(t)|| = 0\}.$$

Then, since each E_i is n_i -homogeneous and E_0 is the c_0 -sum of $\{E_i; i=1, 2, ...\}$, it follows that E_0 has a nontrivial Fubini product by Theorem 3.3. Also, there exists an embedding $E_0 \hookrightarrow A$ defined by $x \mapsto \tilde{x}$, where

$$\tilde{x}(t) = \begin{cases} x(t), & \text{for } t \in S \\ 0, & \text{for } t \notin S. \end{cases}$$

Now, both A and E_0 are nuclear C^* -algebras and we see that A is a C^* -algebra with a nontrivial Fubini product by Lemma 2.1. This completes the proof.

Added in proof: Professor Huruya and the author showed that Theorem 4.1 holds for general C^* -algebras in their paper "Fubini products of C^* -algebras and applications to C^* -exactness".

References

- 1. R. J. Archbold, A counterexample for commutation in tensor products of C*-algebras, Proc. Amer. Math. Soc. 81 (1981), 562-564.
- 2. R. J. Archbold, Approximating maps and exact C*-algebras, Math. Proc. Camb. Phil. Soc. 91 (1982), 285-289.
- J. Dixmier, C*-algebras, North-Holland, Amsterdam-New York-Oxford, 1977.
- T. Huruya, An intersection result for tensor products of C*-algebras, Proc. Amer. Math. Soc. 75 (1979), 186-187.
- 5. T. Huruya, Fubini products of C*-algebras, Tôhoku Math. J. (2) 32(1980), 63-70.
- T. Huruya and J. Tomiyama, Completely bounded maps of C*-algebras, J. Operator Theory 10 (1983), 141-152.
- E. Kirchberg, The Fubini theorem for exact C*-algebras, J. Operator Theory 10 (1983), 3-8.
- 8. S.-H. Kye, Counterexamples in intersections for C*-tensor products, Proc. Edinburgh Math. Soc. 27 (1984), 301-302.
- 9. S.-H. Kye, Subhomogeneous AF C*-algebras and their Fubini products, Proc. Amer. Math. Soc. 94 (1985), 249-253.
- R.R. Smith, Completely bounded maps between C*-algebras, J. London Math. Soc. (2) 27 (1983), 157-166.
- 11. J. Tomiyama, Tensor products and approximation problems of C*-algebras, Publ. RIMS, Kyoto Univ. 11 (1975), 163-183.
- 12. S. Wassermann, On tensor products of certain group C*-algebras, J. Funct. Anal. 23 (1976), 239-254.
- 13. S. Wassermann, A pathology in the ideal space of $\mathcal{L}(\mathcal{H}) \otimes \mathcal{L}(\mathcal{H})$, Indiana Univ. Math. J. 27 (1978), 1011-1020.

Song Sim College for Women Bucheon, Seoul 150-71, Korea