A STABILITY IN TOPOLOGICAL DYNAMICS

JONG-SUH PARK

1. Introduction

THEOREM. Let (X, φ) be a flow whose phase space X is a locally compact metric space. Then a compact invariant subset M of X is asymptotically stable if and only if there exists a continuous nonnegative real valued function f defined on an invariant neighborhood U of M such that f vanishes exactly on M, and that $f(xt) = e^{-t}f(x)$ for all points x of U and real numbers t [1].

In this paper we introduce the concept of a *c*-first countable space which is a more general concept than that of a metric space, and extend the above theorem to the case that the phase space *X* is *c*-first countable and locally compact. All spaces are assumed to be Hausdorff.

2. C-first countable spaces.

DEFINITION. A space X is said to be *c-first countable* if for each compact subset K of X the quotient space X/K is first countable.

Let X be a c-first countable space. Given any compact subset K of X, there exists a family \mathcal{U} consisting of countably many neighborhoods of K such that every neighborhood of K contains some member of \mathcal{U} . Such a family \mathcal{U} will be called a *countable neighborhood base of* K.

THEOREM 2.1 Every second countable space is c-first countable.

Proof. Let X be a second countable space. There exists a countable basis \mathcal{E} for X. Given any compact subset K of X, let \mathcal{U} be the family of all neighborhoods of K which are finite unions of members of \mathcal{E} . Then \mathcal{U} is a countable neighborhood base of K. Thus X is c-first countable.

Received August 11, 1987.

This research is supported by a grant from the Daewoo Foundation.

The converse of the above theorem is not true as shown by uncountable discrete spaces. Clearly, every c-first countable space is first countable but its couverse does not hold.

Example 2.1. Let $X_0 = \{(x,0) : x \in \mathbb{R}\}$ and $X_1 = \{(x,1) : x \in \mathbb{R}\}$ be two subsets of the plane \mathbb{R}^2 . We take a basis \mathcal{E} for the topology on the set $X = X_0 \cup X_1$ as follow;

$$\mathcal{B} = \{\{(x,1)\} : x \in \mathbf{R}\} \cup \{B(x,r) : x \in \mathbf{R}, r > 0\}$$

where $B(x,r) = \{(y,0): |x-y| < r\} \cup \{(y,1): 0 < |x-y| < r\}$. It is clear that X is first countable. We claim that X is not c-first countable. Let us choose a compact subset $K = \{(x,0): x \in I\}$ of X where I is the unit interval. For each neighborhood U of K, let $I(U) = \{x \in I: (x,1) \notin U\}$. Suppose that I(U) is infinite for some neighborhood U of K. I(U) has a cluster point, say y, in I. Since $(y,0) \in K \subset U$, there exists a number r > 0 such that $B(y,r) \subset U$. Since y is a cluster point of I(U), there is a number $z \in I(U)$ such that 0 < |y-z| < r. Since $(z,1) \in B(y,r) \subset U$, we have a contradiction. Thus I(U) is finite for all neighborhoods U of K. Let $U_1, U_2, U_3, ...$ be neighborhoods of K. Since $I(U_n)$ is finite for all n, $A = \bigcup_{n=1}^{\infty} I(U_n)$ is countable. Thus there is a number $w \in I - A$. Let $V = X_0 \cup \{(x,1): x \neq w\}$. Then V is a neighborhood of K and $U_n \not\subset V$ for all n. Thus there is no countable neighborhood base of K. Hence X is not c-first countable.

THOEREM 2. 2. Every metric space is c-first countable.

Proof. Let (X, d) be a metric space. Given any compact subset K of X, it is easy to show that the family $\left\{B\left(K, \frac{1}{n}\right) : n=1, 2, 3, \ldots\right\}$ is a countable neighborhood base of K, where $B\left(K, \frac{1}{n}\right) = \left\{x \in X : d\left(K, x\right) < \frac{1}{n}\right\}$. Thus X is c-first countable.

The converse of the above theorem is not true. The following example shows that there exists a *c*-first countable and locally compact space which is not a metric space.

Example 2.2. For each irrational x, we choose a sequence (x_n) of

rationals converging to it in the Euclidean topology. The rational sequence topology \mathcal{T} on R is then defined by declaring each rational open, and selecting the sets $U_n(x) = \{x_i : i=n, n+1, n+2, \ldots\} \cup \{x\}$ as a basis for the irrational point x. The space (R, \mathcal{T}) is Hausdorff, locally compact and not metrizable [2]. We will show that (R, \mathcal{T}) is c-first countable. Let K be a compact subset of R. If K-Q is infinite, where Q is the set of rationals, then the open cover $\{U_1(x) : x \in K - Q\} \cup \{Q\}$ of K has no finite subcover, this is a contradiction. Thus K-Q is finite, say K- $Q = \{x^1, x^2, \ldots, x^m\}$. Let U be an eighborhood of K. For each $i=1, 2, \ldots, m$, since $x^i \in K$ - $Q \subset U$ -Q, there is an n_i such that $U_{n_i}(x^i) \subset U$. Let N=max n_i . Then $\bigcup_{i=1}^m U_N(x^i) \cup (K \cap Q) \subset U$. Thus $\bigcup_{i=1}^m U_n(x^i) \cup (K \cap Q) \subset U$. Thus $\bigcup_{i=1}^m U_n(x^i) \cup (K \cap Q) \subset U$. Therefore, $\bigcup_{i=1}^m U_n(x^i) \cup (K \cap Q) \subset U$. Therefore, $\bigcup_{i=1}^m U_n(x^i) \cup (K \cap Q) \subset U$. Therefore, $\bigcup_{i=1}^m U_n(x^i) \cup (K \cap Q) \subset U$. Therefore, $\bigcup_{i=1}^m U_n(x^i) \cup (K \cap Q) \subset U$. Therefore, $\bigcup_{i=1}^m U_n(x^i) \cup (K \cap Q) \subset U$. Therefore, $\bigcup_{i=1}^m U_n(x^i) \cup (K \cap Q) \subset U$. Therefore, $\bigcup_{i=1}^m U_n(x^i) \cup (K \cap Q) \subset U$. Therefore, $\bigcup_{i=1}^m U_n(x^i) \cup (K \cap Q) \subset U$.

Lemma 2.1. Let X be a c-first countable and locally compact space, and let K be a compact subset of X. For each neighborhood U of K, there exists a countable neighborhood base $\{U(r): r \in D\}$ of K such that

- (1) U(1) = U, and that
- (2) if $r_1 < r_2$, then $\overline{U(r_1)} \subset U(r_2)$

where D is the set of all rationals of form $\frac{k}{2^n}$, $0 < \frac{k}{2^n} \le 1$.

Proof. Let us show that for each $r \in D$ we can associate a neighborhood U(r) of K satisfying the above conditions (1) and (2). We proceed by induction on exponent of dyadic fractions, letting $\mathcal{U}_n = \left\{U\left(\frac{k}{2^n}\right): k=1,2,...,2^n\right\}$. There exists a countable neighborhood base $\{V_m: m=1,2,...\}$ of K. We may assume that $V_1 \supset V_2 \supset ...$ and \overline{V}_1 compact. There is an m_1 such that $\overline{V}_{m_1} \subset U$. \mathcal{U}_1 consists of $U\left(\frac{1}{2}\right) = V_{m_1}$ and U(1) = U. Assume \mathcal{U}_{n-1} constructed. Note that only $U\left(\frac{k}{2^n}\right)$ for odd k requires definition. There is an $m_n > m_{n-1}$ such that $\overline{V}_{m_n} \subset U\left(\frac{1}{2^{n-1}}\right)$. We define $U\left(\frac{1}{2^n}\right) = V_{m_n}$. For each odd $k \neq 1$, we have from \mathcal{U}_{n-1} that $\overline{U\left(\frac{k-1}{2^n}\right)} \subset U\left(\frac{k+1}{2^n}\right)$, so we define $U\left(\frac{k}{2^n}\right)$ to be an open set V satisfying

$$\overline{U\left(\frac{k-1}{2^n}\right)} \subset V \subset \overline{V} \subset U\left(\frac{k+1}{2^n}\right)$$

and \overline{V} compact. This completes inductive step. Given any neighborhood W of K, there is an n such that $V_{m_n} = U\left(\frac{1}{2^n}\right) \subset W$. Thus the family $\{U(r) : r \in D\}$ is a countable neighborhood base of K.

THEOREM 2.3. Let X be a locally compact space. Then X is c-first countable if and only if for each compact subset K of X there exists a continuous nonnegative real valued function f defined on X such that f vanishes exactly on K.

Proof. (\Rightarrow) By Lemma 2.1, there exists a countable neighborhood base $\{U(r): r \in D\}$ such that U(1) = X, and that if $r_1 < r_2$ then $\overline{U(r_1)} \subset U(r_2)$. Define a function $f: X \to \mathbb{R}^+$ by $f(x) = \inf\{r \in D: x \in U(r)\}$. Clearly, $0 \le f \le 1$. It is easy to show that f vanishes exactly on K. Given any $\varepsilon > 0$, we can choose an $r \in D$ such that $r < \varepsilon$. Since $f(U(r)) \subset (-\varepsilon, \varepsilon)$, f is continuous on K. We will show that f is continuous at $x \in X - K$. There are two possibilities;

Case 1. f(x) < 1; Given any $\varepsilon > 0$, we can choose r_1 and r_2 in D such that $f(x) - \varepsilon < r_1 < f(x) < r_2 < f(x) + \varepsilon$. Then $U(r_2) - \overline{U(r_1)}$ is a neighborhood of x and $f(U(r_2) - \overline{U(r_1)}) \subset (f(x) - \varepsilon, f(x) + \varepsilon)$.

Case 2. f(x)=1; Given any $\varepsilon>0$, there exists a number $r\in D$ such that $1-\varepsilon< r<1$. Then $X-\overline{U(r)}$ is a neighborhood of x and $f(X-\overline{U(x)})$ $\subset (1-\varepsilon, 1+\varepsilon)$. Thus f is continuous.

(\rightleftharpoons) There exists a neighborhood U of K such that \overline{U} is compact. For each positive integer n, the set $U_n = f^{-1} \left[0, \frac{1}{n} \right] \cap U$ is a neighborhood of K. Given any neighborhood V of K, suppose that $U_n \not\subset V$ for all n. For each n, we can choose an $x_n \in U_n - V$. Since \overline{U} is compact, the sequence (x_n) in \overline{U} has a convergent subsequence. Let $x_n \to x$. It is clear that $x \in X - V$ and $f(x_n) \to f(x)$. Since $f(x_n) < \frac{1}{n}$ for all $n, f(x_n) \to 0$. Thus f(x) = 0 and so $x \in K$. This is a contradiction. So $U_n \subset V$ for some n. Hence the family $\{U_n : n = 1, 2, ...\}$ is a countable neighborhood base of K.

3. Asymptotic stability

Throughout this section (X, φ) is a flow whose phase space X is c-first countable and locally compact.

For a point x of X, the positive (negative) limit set $L^+(x)$ $(L^-(x))$ of x defined by

$$L^+(x) = \bigcap_{t \in R^+} \overline{x[t,\infty)} \quad (L^-(x) = \bigcap_{t \in R^-} \overline{x(-\infty,t]})$$

where \mathbf{R}^+ (\mathbf{R}^-) denotes the set of nonnegative (nonpositive) real numbers. It is easy to show that $y \in L^+(x)$ ($L^-(x)$) if and only if there is a sequence (t_n) in \mathbf{R}^+ (\mathbf{R}^-) such that $t_n \to \infty$ ($-\infty$) and $xt_n \to y$. Obviously, the set $L^+(x)$ ($L^-(x)$) is invariant. Furthermore, the set $L^+(x)$ ($L^-(x)$) is nonempty whenever $x\mathbf{R}^+(x\mathbf{R}^-)$ is compact. A subset M of X is said to be stable if for each neighborhood U of M, there exists a neighborhood V of M such that $V\mathbf{R}^+ \subset U$. It is clear that a stable set is positively invariant. For a subset M of X, the region of attraction A(M) is defined by $A(M) = \{x \in X : L^+(x) \neq \phi \subset M\}$. Note that A(M) is invariant. A subset M of X is called an attractor if the set A(M) is a neighborhood of M. When a subset M of X is stable and an attractor, the set M is said to be asymptotically stable.

Lemma 3.1 Let M be a compact subset of X. Then $x \in A(M)$ if and only if for each neighborhood U of M there exists a $t \in \mathbb{R}^+$ such that $x[t, \infty) \subset U$.

Proof. (\Rightarrow) Let $x \in A(M)$ and U a neighborhood of M. We can choose a neighborhood V of M such that $\overline{V} \subset U$ and \overline{V} compact. Suppose that for each $t \in \mathbb{R}^+$ there is an $s \ge t$ such that $xs \notin U$. Then there is an $r_1 \ge 1$ such that $xr_1 \in X - U \subset X - \overline{V}$. Since $x \in A(M)$, there exists a $t_1 > r_1$ such that $xt_1 \in V$. We can choose an s_1 such that $r_1 < s_1 < t_1$ and $xs_1 \in \partial V$ where ∂V is the boundary of V. By the same way we can choose r_2 , t_2 and s_2 such that

 $r_2 \ge \max(2, t_1)$, $xr_2 \in X - \overline{V}$, $xt_2 \in V$, $r_2 < s_2 < t_2$ and $xs_2 \in \partial V$, and so on. Thus we obtain a sequence (s_n) in \mathbb{R}^+ such that $s_n \to \infty$ and $xs_n \in \partial V$ for all n. Since ∂V is compact, the sequence (xs_n) has a convergent subsequence. Let $xs_n \to z \in \partial V$. Since $z \in L^+(x) \subset M \subset V$, we have a contradiction, Thus there is a $t \in \mathbb{R}^+$ such that $x[t, \infty) \subset U$.

(\Leftarrow) There exists a neighborhood U of M such that \bar{U} is compact. We can choose a $t \in \mathbb{R}^+$ such that $x[t, \infty) \subset U$. Since

$$\overline{xR^+} = x[0,t] \cup \overline{x[t,\infty)} \subset x[0,t] \cup \overline{U},$$

 $\overline{xR^+}$ is compact. Thus $L^+(x) \neq \phi$. To show $L^+(x) \subset M$, suppose that there exists an $y \in L^+(x) - M$. There are neighborhoods V of M and W of y such $V \cap W = \phi$. We can choose a $t \in \mathbb{R}^+$ such that $x[t, \infty) \subset V$. Since $W \cap x[t, \infty) = \phi$, $y \notin \overline{x[t, \infty)}$ and so $y \notin L^+(x)$. This is a contradiction. Thus $L^+(x) \subset M$. Hence $x \in A(M)$.

Lemma 3.2 Let a compact subset M of X be asymptotically stable and U a neighborhood of M. For any point x of A(M), if $x\mathbf{R}^+ \subset U$, then there exists a neighborhood V of x such that $V\mathbf{R}^+ \subset U$.

Proof. Since M is stable, there is a neighborhood U_1 of M such that $U_1\mathbf{R}^+\subset U$. By Lemma 3.1, there is an $s\in \mathbf{R}^+$ such that $x[s,\infty)\subset U_1$, we can choose a neighborhood W_1 of x such that $W_1s\subset U_1$. For each $t\in [0,s]$, since $xt\in U$, there exist neighborhoods V_t of x and I_t of t such that $V_tI_t\subset U$. There are finitely many $0\leq t_1,t_2,\ldots,t_n\leq s$ such that $[0,s]\subset \bigcup_{i=1}^n I_{t_i}$. Let $W_2=\bigcap_{i=1}^n V_{t_i}$. Then W_2 is a neighborhood of x. Given any $y\in W_2$ and $t\in [0,s]$, since $t\in I_{t_i}$ for some i, $yt\in Vt_iI_i\subset U$. Thus $W_2[0,s]\subset U$. Let $V=W_1\cap W_2$. Then V is a neighborhood of x. From the fact that

 $V[0, s] \subset W_2[0, s] \subset U$ and $V[s, \infty) \subset W_1[s, \infty) = (W_1 s) \mathbf{R}^+ \subset U_1 \mathbf{R}^+ \subset U$ we have $V\mathbf{R}^+ = V[0, s] \cup V[s, \infty) \subset U$.

Lemma 3.3 Let U be a neighborhood of a point x of X. If y is a point of X and $y\mathbf{R}^+ \not\subset \overline{U}$, then there is a neighborhood V of y such that $z\mathbf{R}^+ \not\subset \overline{U}$ for all points z of V.

Proof. There is a $t \in \mathbb{R}^+$ such that $yt \notin \overline{U}$. Since $X - \overline{U}$ is a neighborhood of yt, there exists a neighborhood V of y such that $Vt \subset X - \overline{U}$. Then V is a desired neighborhood.

THEOREM 3.1 Let M be an asymptotically stable compact subset of X. Then there exists a continuous nonnegative real valued function f defined on A(M) such that f vanishes exactly on M, and that f(xt) < f(x) for all points x of A(M) - M and all positive real numbers t.

Proof. Let D be the set of all rationals !r of form $\frac{k}{2^n}$, $0 < \frac{k}{2^n} \le 1$.

By Lemma 2.1, there exists a countable neighborhood base $\{U(r): r \in D\}$ of M satisfying

- (1) U(1) = A(M) and
- (2) if $r_1 < r_2$ then $\overline{U(r_1)} \subset U(r_2)$.

Define a function $g: A(M) \to \mathbb{R}^+$ by $g(x) = \inf \{ r \in D : x \mathbb{R}^+ \subset U(r) \}$. Clearly, $0 \le g \le 1$. Let $x \in M$. For any $r \in D$, since $x \mathbb{R}^+ \subset M \subset U(r)$, $g(x) \le r$. Thus g(x) = 0. Let $x \in A(M) - M$. We can choose an $r \in D$ such that $x \notin U(r)$. Then $g(x) \ge r > 0$. Thus g vanishes exactly on M. Let us show that g is continuous on M. Given any $\varepsilon > 0$, there exists a number $r \in D$ such that $r < \varepsilon$. Since M is stable, there exists a neighborhood V of M such that $V \mathbb{R}^+ \subset U(r)$. Since $g(V) \subset (-\varepsilon, \varepsilon)$, g is continuous on M. We further show that g is continuous at each point x in A(M) - M. There are two possibilities;

- (1) In case g(x) = 1, given any $\varepsilon > 0$, we can choose an $r \in D$ such that $1 \varepsilon < r < 1$. Since $x \mathbb{R}^+ \not\subset \overline{U(r)}$, by Lemma 3.3, there is a neighborhood V of x such that $y \mathbb{R}^+ \not\subset \overline{U(r)}$ for all $y \in V$. Then $g(V) \subset (1 \varepsilon, 1 + \varepsilon)$.
- (2) In case g(x) < 1, given any $\varepsilon > 0$, we choose $r_1, r_2 \in D$ such that $g(x) \varepsilon < r_1 < g(x) < r_2 < g(x) + \varepsilon$. Since $x\mathbf{R}^+ \subset U(r_2)$, there is a neighborhood V_1 of x such that $V_1\mathbf{R}^+ \subset U(r_2)$ by Lemma 3.2. By Lemma 3.3, there exists a neighborhood V_2 of x such that $y\mathbf{R}^+ \not\subset \overline{U(r_1)}$ for all $y \in V_2$ since $x\mathbf{R}^+ \not\subset \overline{U(r_1)}$. Let $V = V_1 \cap V_2$. Then V is a neighborhood of x and $g(V) \subset (g(x) \varepsilon, g(x) + \varepsilon)$. Thus g is continuous. We claim that $g(xt) \leq g(x)$ for all $x \in A(M)$ and $t \in \mathbf{R}^+$. Suppose that g(xt) > g(x) for some $x \in A(M)$ and $t \in \mathbf{R}^+$. We can choose an $r \in D$ such that g(x) < r < g(xt). Since $(xt) \mathbf{R}^+ = x[t, \infty) \subset x\mathbf{R}^+ \subset U(r)$, $g(xt) \leq r$. This is a contradiction. Thus $g(xt) \leq g(x)$ for all $x \in A(M)$ and $t \in \mathbf{R}^+$.

Define a function $f: A(M) \rightarrow \mathbb{R}^+$ by

$$f(x) = \int_0^\infty e^{-s} g(xs) \, ds.$$

Clearly, f is continuous and vanishes exactly on M. It remains to prove that f(xt) < f(x) for all $x \in A(M) - M$ and t > 0. Since $g((xt)s) = g((xs)t) \le g(xs)$ for all $s \in \mathbb{R}^+$, $f(xt) \le f(x)$. To rule out f(xt) = f(x), observe that in this case we must g(x(t+s)) = g((xt)s) = g(xs) for all $s \in \mathbb{R}^+$. In particular, letting s = 0, t, 2t, ..., we get g(x(nt)) = g(x), n = 1, 2, ... Given any $r \in D$, since $x \in A(M)$, by Lemma 3.1, there exists an $s \in \mathbb{R}^+$ such that $x[s, \infty) \subset U(r)$. Since $nt \to \infty$ as $n \to \infty$, $nt \to \infty$

 $\geq s$ for some m. Since

$$(x(mt))\mathbf{R}^+ = x\lceil mt, \infty) \subset x\lceil s, \infty) \subset U(r),$$

 $g(x) = g(x(mt)) \le r$. Thus g(x) = 0. But as $x \in A(M) - M$, we must g(x) > 0, a contradiction. We have thus proved that f(xt) < f(x). The theorem is proved.

THEOREM 3.2 Let M be an asymptotically stable compact invariant subset of X. Then there exists a continuous function $f: A(M) \rightarrow \mathbb{R}^+$ such that f vanishes exactly on M, and that $f(xt) = e^{-t}f(x)$ for all $x \in A(M)$ and all $t \in \mathbb{R}$.

Proof. By Theorem 3.1, there exists a continuous function $g:A(M)\to \mathbb{R}^+$ such that g vanishes exactly on M, and that g(xt) < g(x) for all $x\in A(M)-M$ and all t>0. Since A(M) is a neighborhood of M, we can choose a neighborhood U of M such that $\overline{U}\subset A(M)$ and \overline{U} is compact. Set $a=\min g(\partial U)$. Clearly, a>0. Let $V=g^{-1}[0,a)$. Then V is a neighborhood of M. Suppose that $\overline{V}\not\subset \overline{U}$ and choose a point $x\in \overline{V}-\overline{U}$. Since $x\in \overline{V}\subset g^{-1}[0,a]\subset A(M)$, there exists a number s>0 such that $x[s,\infty)\subset U$ by Lemma 3.1. Thus we can choose a t>0 such that $xt\in \partial U$. Since $a\leq g(xt)< g(x)\leq a$, we have a contradiction. This shows that $\overline{V}\subset \overline{U}$. We claim that $\partial V\cap (\partial V)t=\emptyset$ for all t>0. Suppose that $\partial V\cap (\partial V)t\neq \emptyset$ for some t>0. Then there exists an $x\in \partial V$ such that $xt\in \partial V$. Since $\partial V\subset g^{-1}(a)$, a=g(xt)< g(x)=a. This is a contradiction. Thus $\partial V\cap (\partial V)t=\emptyset$ for all t>0. We will show that for every $x\in A(M)-M$, there is unique $t\in \mathbb{R}$ such that $xt\in \partial V$. There are three possibilities;

- (1) In case $x \notin \overline{V}$, by Lemma 3.1, there is an s>0 such that $x[s, \infty) \subset V$. Thus we can choose a t>0 such that $xt \in \partial V$.
 - (2) In case $x \in \partial V$, $x0 = x \in \partial V$.
- (3) In case $x \in V$, assume that $xR \subset V$. Since $\overline{xR} \subset \overline{V}$ is compact, $L^-(x) \neq \emptyset$. If $L^-(x) \cap M \neq \emptyset$, then we can choose an $y \in L^-(x) \cap M$. There exists a sequence (t_n) in R^- such that $t_n \to -\infty$ and $xt_n \to y$. Since $g(x) \leq g(xt_n)$ for all n, $g(x) \leq g(y) = 0$, this is a contradiction. Thus $L^-(x) \cap M = \emptyset$. Choose a point $z \in L^-(x)$. Since $L^+(z) \subset \overline{zR} \subset L^-(x)$, $L^+(z) \cap M = \emptyset$. But $L^+(z)$ is nonempty and contained in M because of $z \in L^-(x) \subset \overline{xR} \subset \overline{V} \subset A(M)$. This is a contradiction. Thus $xR \not\subset V$. Hence we can choose a $t \in R$ such that $xt \in \partial V$. The uniqueness of such t can be obtained from the fact that $\partial V \cap (\partial V) t = \emptyset$ for all t > 0.

Define a function $m: A(M) - M \to R$ by $xm(x) \in \partial V$. Let $x \in A(M) - M$. Given any $t \in R$, since $(xt)(m(x)-t)=xm(x) \in \partial V$, m(xt)=m(x)-t. Thus $m(xt)\to \pm \infty$ as $t\to \mp \infty$. We will show that m is continuous. Given any $x\in A(M)-M$ and $\varepsilon>0$, since $x(m(x)+\varepsilon)\in V$, $W_1=V(-m(x)-\varepsilon)$ is a neighborhood of x. For all $y\in W_1$, $y(m(x)+\varepsilon)\in V$ implies $m(y)< m(x)+\varepsilon$. Since $x(m(x)-\varepsilon)\in X-\overline{V}$, $W_2=(X-\overline{V})(-m(x)+\varepsilon)$ is a neighborhood of x. For all $y\in W_2$, $y(m(x)-\varepsilon)\in X-\overline{V}$ implies $m(x)-\varepsilon< m(y)$. Let $W=W_1\cap W_2$. Then W is a neighborhood of x and $m(x)-\varepsilon< m(y)< m(x)+\varepsilon$ for all $y\in W$. Thus x is continuous.

Define a function $f: A(M) \rightarrow \mathbb{R}^+$ by

$$f(x) = \begin{cases} e^{m(x)} & \text{if } x \in A(M) - M \\ 0 & \text{if } x \in M. \end{cases}$$

We will show that f is continuous. It is sufficient to show that f is continuous on M. Suppose that there exists an $\varepsilon > 0$ such that $f(U) \not\subset [0, \varepsilon)$ for all neighborhoods U of M. There is a $T \in \mathbb{R}^-$ such that $e^T < \varepsilon$. For each neighborhood U of M, $f(U) \not\subset [0, e^T)$ and so $m(U-M) \not\subset (-\infty, T)$. Since X is c-first countable, there is a countable neighborhood base $\{V_n : n=1, 2, ...\}$ of M. We may assume that $V \supset V_1 \supset V_2 \supset ...$ For each n, since $m(V_n - M) \not\subset (-\infty, T)$, there is an $x_n \in V_n - M$ such that $T \leq m(x_n) \leq 0$. There is a $y \in M$ such that $x_n \to y$. $(m(x_n))$ is a sequence in [T, 0]. Since [T, 0] is compact, $(m(x_n))$ has a convergent subsequence. Let $m(x_n) \to t \in [T, 0]$. Then $x_n m(x_n) \to y t \in M$ and $y t \in \partial V$. This is a contradiction. Thus for each $\varepsilon > 0$, there is a neighborhood U of M such that $f(U) \subset [0, \varepsilon)$. Hence f is continuous on M. Clearly, f vanishes exactly on M. For any $x \in A(M)$ and $t \in \mathbb{R}$,

$$f(xt) = e^{m(xt)} = e^{m(x)-t} = e^{-t}e^{m(x)} = e^{-t}f(x).$$

Thus the theorem is proved.

Lemma 3.4 Let M be a compact subset of X, U an invariant neighborhood of M and $f: U \rightarrow \mathbb{R}^+$ a continuous function such that f vanishes exactly on M and $f(xt) = e^{-t}f(x)$ for all $x \in U$ and $t \in \mathbb{R}$. If K is a compact positively invariant subset of U then K is contained in A(M).

Proof. Let $x \in K$. Since $\overline{xR^+} \subset K$ is compact, $L^+(x) \neq \emptyset$. Let $y \in L^+(x)$. Take a t > 0. Since $yt \in L^+(x)$, there are sequence (t_n) , (s_n) in R^+ such that $t_n \to \infty$, $s_n \to \infty$, $xt_n \to y$ and $xs_n \to yt$. We may assume that $t_n \geq s_n$ for all n. Since $f(xt_n) \leq f(xs_n)$, $f(y) \leq f(yt)$. Since $f(yt) \leq f(y)$,

 $f(y) = f(yt) = e^{-t}f(y)$. Thus f(y) = 0 and so $y \in M$. Hence $L^+(x) \subset M$. Therefore $x \in A(M)$.

THEOREM 3.3 Let M be a compact invariant subset of X. If there exists a continuous nonnegative real valued function f defined on an invariant neighborhood U of M such that f vanishes exactly on M, and that $f(xt) = e^{-t}f(x)$ for all points x of U and all real numbers t, then M is asymptotically stable and U = A(M).

Proof. Given any neighborhood V of M, we can choose a neighborhood W_1 of M such that $\overline{W}_1 \subset U \cap V$ and \overline{W}_1 is compact. Let $a=\min f(\partial W_1)$. Then a>0. Let $W=f^{-1}[0,a)$. Then $W \subset W_1$ and W is a positively invariant neighborhood of M. Thus M is stable. We can choose a neighborhood V of M such that $\overline{V} \subset U$ and \overline{V} is compact. Let $a=\min f(\partial V)$. Then a>0. Take a number r such that 0 < r < a, and let $W=f^{-1}[0,r]$. Then $W \subset V$ and W is compact positively invariant. By Lemma 3.4, $W \subset A(M)$. Given any $x \in U$, if $x \in W$, then $x \in A(M)$, and if $x \notin W$, then f(x)>r. There is a t>0 such that $f(xt)=e^{-t}f(x)=r$. Since $K=x\mathbf{R}^+\cup W=x[0,t]\cup W$ is a compact positively invariant subset of U, by Lemma 3.4, $K \subset A(M)$ and so $x \in A(M)$. Thus $U \subset A(M)$. Given any $x \in A(M)$, since U is a neighborhood of M, by Lemma 3.1, there is a $t \in \mathbf{R}^+$ such that $xt \in U$. Since U is invariant, x=(xt) $(-t) \in U$. Hence A(M)=U and so A(M) is a neighborhood of M. Therefore M is asymptotically stable.

References

- 1. N.P. Bhatia and G.P. Szego, Dynamical Systems: Stability Theory and Applications, Lecture Notes in Mathematics, Springer-Verlag, 1967.
- L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Holt, Rinehart and Winston, Inc., 1970.

Chungnam National University Daejeon 300-31, Korea