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A STABILITY IN TOPOLOGICAL DYNAMICS

Jong~Sun Park

1. Introduction

TueoreMm. Let (X, @) be a flow whose phase space X is a locally compact
metric space. Then a compact invariant subset M of X is asymptotically
stable if and only if there exists a continuous nonnegative real wvalued
Sfunction f defined on an invariant neighborhood U of M such that f
vanishes exactly on M, and that f(xt)=e tf(x) for all points z of U
and real numbers ¢ [1].

In this paper we introduce the concept of a c-first countable space
which is a more general concept than that of a metric space, and extend
the above theorem to the case that the phase space X is ¢-first countable
and locally compact. All spaces are assumed to be Hausdorff.

2. C-first countable spaces.

Derinition. A space X is said to be c—~first countable if for each compact
subset K of X the quotient space X/K is first countable.

Let X be a c-first countable space. Given any compact subset K of
X, there exists a family % consisting of countably many neighborhoods
of K such that every neighborhood of K contains some member of .
Such a family % will be called a countable neighborhood base of K.

Turorem 2.1 Every second countable space is c—first countable.

Proof. Let X be a second countable space. There exists a countable
basis £ for X. Given any compact subset K of X, let % be the family
of all neighborhoods of K which are finite unions of members of A&.
Then % is a countable neighborhood base of K. Thus X is c—first
countable.
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The converse of the above theorem is not true as shown by uncount-
able discrete spaces. Clearly, every c—first countable space is first coun-
table but its couverse does not hold.

Exameie 2.1. Let Xo=1{(z,0) : z€R} and X;={(z,1) : z&R} be
two subsets of the plane R2. We take a basis & for the topology on
the set X=X,U X, as follow;

&={{(z,1)} : z€R} U {B(z, 1) : z€R, r>0}
where B(z,r) = {(,0) : lz—y|<r} U {(5,1) : 0<|z—y|<r}. It isclear
that X is first countable. We claim that X is not ¢-first countable. Let
us choose a compact subset K= {(z,0) : z&1I} of X where I is the unit
interval. For each neighborhood U of K, let I(U) = {z&€1: (z,1) ¢ U}.
Suppose that I'(U) is infinite for some neighborhood U of K. I(U)
has a cluster point, say y, in I. Since (y,0)€KCU, there exists a
number >0 such that B(y,r) CU. Since y is a cluster point of I(U),
there is a number z€I(U) such that 0<|y—z2|<lr. Since (z,1) €B(y, r)
cU, we have a contradiction. Thus I(U) is finite for all neighbo-
thoods U of K. Let Ul, U,, Us, ... be neighborhoods of K. Since I(U,)

is finite for all n, A= U I(U,) is countable. Thus there is a number

wal—A Let V= XOU {(x, 1) : z#w}. Then V is a neighborhood of
K and U,¢ V for all n. Thus there is no countable neighborhood base
of K. Hence X is not c-first countable.

TuoereEM 2. 2. Every metric space is c—first countable.

Proof. Let (X,d) be a metric space. Given any compact subset K of

X, it is easy to show that the family {B(K, —i—) :n=1,23, } is a

countable neighborhood base of K, where B(K, —117): {xEX :d(K, x)

<—i—} Thus X is c-first countable.

The converse of the above theorem is not true. The following exam-
ple shows that there exists a c—firrt countable and locally compact space
which is not a metric space.

Examrie 2.2. For each irrational z, we choose a sequence (z,) of
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rationals converging to it in the Euclidean topology. The rational seq-
uence topology @ on R is then defined by declaring each rational open,
and selecting the sets U,(2) = {z; : i=n,n+1,2+2, ...} U {z} as a basis
for the irrational point z. The space (B, ©) is Hausdorff, locally com-
pact and not metrizable [2]. We will show that (B, ©) is ¢-first coun-
table. Let K be a compact subset of B. If K-Q is infinite, where Q is
the set of rationals, then the open cover {U;(z) : zeK-Q} U {Q} of K
has no finite subcover, this is a contradiction. Thus K-Q is finite, say
K-Q={z!, 22, ..., 27}. Let U be aneighborhood of K. For each i=1, 2,
..,m, since *€K-QCU—Q, there is an »; such that U, («9) CU.

Let N—max ;. Then 0 Uy(2) U(KNQ) cU. Thus {0 U, U (K

nNe) : n=1, 2, } is a countable neighborhood base of K. Hence (R,
®) is c—first countable.

Lemma 2. 1. Let X be a c—first countable and locally compact space,
and let K be a compact subset of X. For each neighborhood U of K,
there exists a countable neighborhood base {U(r) : re D} of K. such that

1) UQ)=U, and that

@ if 71<<ry then Ulr) CU(ry)
where D is the set of all rationals of form k

k
—_ < .
g 0=l

Proof. Let us show that for each r&D we can associate a neighbo-
rhood U(r) of K satisfying the above conditions (1) and (2). We

proceed by induction on exponent of dyadic fractions, letting %,=
{U (—gn—) k=12, ..., 2"}. There exists a countable neighborhood base
{Vp:m=1,2..) of K. We may assume that V;DV,D... and V;
compact. There is an m, such that V,,cU. ¥, consists of U (—%—)=le
and UQQ)=U. Assume %, constructed. Note that only U (—5—,‘) for
odd % requires definition. There is an m,>m, ; such that V, C

1 1\ _
U (—2”—_—1—) We define U (—27) Va, For each odd 2#1, we have from

U, that U (k;})CU(—k—;—;‘l), so we define U(——Zg—) to be an open
set V satisfying
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U(kjl)chVcU(H;l)
2 2
and V compact. This completes inductive step. Given any neighborhood
W of K, there is an n such that V, =U ( 21” )C W. Thus the family
{U(r) : r&D} is a countable neighborhood base of K.

TueoreM 2. 3. Let X be a locally compact space. Then X is c—first
countable if and only if for each compact subset K of X there exists a
continuous nonnegative real valued function f defined on X such that f
vanishes exactly on K.

Proof. (=) By Lemma 2.1, there exists a countable neighborhood
base {U(r) : r&D} such that U(1)=X, and that if r,<<r, then U(r,)
CU(rz). Define a function f: X—R* by f(z)=inf{reD : ze U()}.
Clearly, 0<f<1. It is easy to show that f vanishes exactly on K.
Given any ¢>>0, we can choose an r& D such that r<le. Since F(U(#))
C(—¢,¢), f is continuous on K. We will show that f is continuous at
z&X—K. There are two possibilities;

Case 1. f(z)<1; Given any £>0, we can choose r, and r, in D
such that f(z) —e<r<f(z) <rp<f(@)+e. Then U(p)—U(ry) is a
neighborhood of z and f(U (rs) —U(r)) C (f(z) —¢, £ () +¢).

Case 2. f(x)=1; Given any &>0, there exists a number r&D such
that 1—e<r<1. Then X—UT(r) is a neighborhood of z and f(X—U(z))
C (1—s,14+¢). Thus f is continuous.

(¢) There exists a neighborhood U of K such that U is compact.
For each positive integer », the set U,=f "1[0, ~;11~) N U is a neighborh-

ood of K. Given any neighborhood V of K, suppose that U,ZV for
all ». For each n, we can choose an z,&U,— V. Since U is compact,
the sequence (z,) in U has a convergent subsequence. Let z,—z. It is

clear that z€X—V and f(x,) —f(x). Since f(xz,) <% for all », f(x,)
—0. Thus f(z)=0 and so z& K. This is a contradiction. So U,CV

for some z. Hence the family {U,: »=1,2, ...} is a countable neighbo-
rhood base of K.
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3. Asymptotic stability

Throughout this section (X, ¢) is a flow whose phase space X is ¢-
first countable and locally compact.

For a point z of X, the positive (negative) limit set L*(z) (L (z))
of z defined by

L (z)= N z[t, ) (L (@)= 0 a(~o,1])

where R* (R~) denotes the set of nonnegative (nonpositive) real num-
bers. It is easy to show that yeL*(x) (L (z)) if and only if there is
a sequence (¢,) in B* (R~) such that ¢, (—co) and zz,—y. Obv-
iously, the set L*(z) (L™ (x)) is invariant. Furthermore, the set L*(z)
(L~ (z)) is nonempty whenever zZR*(zR™) is compact. A subset M of
X is said to be stable if for each neighborhood U of M, there exists a
neighborhood V of M such that VR*CU. It is clear that a stable set
is positively invariant. For a subset M of X, the region of attraction
A(M) is defined by A(M)={reX : L"(z) #¢CM}. Note that A(M)
is invariant. A subset M of X is called an attractor if the set A(M)
is a neighborhood of M. When a subset M of X is stable and an
attractor, the set M is said to be asymptotically stable.

LemMa 3.1 Let M be a compact subset of X. Then x€ A(M) if and
only if for each neighborhood U of M there exists a 1S RY such that
z[t, oo) C U.

Proof. (=) Let x€A(M) and U a neighborhood of M. We can
choose a neigborhood V of M such that VC U and V compact. Suppose
that for each tcR* there is an s>t such that zs&U. Then there is
an r;>1 such that zr,€eX—UCX—V. Since z€A(M), there exists a
t;>r; such that 2t,€ V. We can choose an s, such that r,<(s;<t; and
2510V where 9V is the boundary of V. By the same way we can
choose ry, £, and s, such that

rzzmax(Z, tl), erEX—V, Tl & V, 7'2<Sg<t2 and .’L'SgeaV,
and so on. Thus we obtain a sequence (s,) in B* such that 5,—>c and
25,0V for all n. Since 0V is compact, the sequence (zs,) has a

convergent subsequence. Let x5,—2z€0V. Since €L (@) CMCV, we
have a contradiction, Thus there is a z&R* such that z[¢, o) CU.
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(¢=) There exists a neighborhood U of M such that U is compact.

We can choose a t€R* such that z[¢, o) CU. Since
zR*=z[0, £] Uzlt, ) cz[0,£JU T,

zR* is compact. Thus L*(z) #¢. To show L*(z) CM, suppose that
there exists an y&L* () —M. There are neighborhoods V of M and
W of y such VN W=¢. We can choose a t&R* such that z[¢, c0) C V.
Since WNz[z ) =¢, y¢z[t, o) and so y&L* (z). This is a contra-
diction. Thus L*(z) c M. Hence z€ A(M).

LemMa 3.2 Let a compact subset M of X be asymptotically stable and
U a neighborhood of M. For any point z of AM), if zxR*CU, then
there exists a neighborhood V of x such that VR CU.

Proof. Since M is stable, there is a neighborhood U; of M such that
U;R*cU. By Lemma 3.1, there is an s&R* such that z[s, o) cU,,
we can choose a neighborhood W; of z such that Wisc U;. For each
te[0,s], since xtc U, there exist neighborhoods V, of = and I, of ¢
such that V,I,cU. There are finitely many 0<zy, ¢, ..., £,<s such that

[o, s]CiLlI‘"' Let W2=’_r:11 V,. Then W, is a neighborhood of z. Given
any y& W, and t€[0, s], since ¢€1I,; for some i, yte VI, cU. Thus
W>[0,s]CU. Let V=W;N W, Then V is a neighborhood of z. From
the fact that

V[0, s]cW2[0,s]<cU and Vs, 00) CW;[s, 00) =(Wis) RFcUR*cU
we have VR*=V[0,s]U V[s, o) cU.

LemMa 3.3 Let U be a neighborhood of a point x of X. If y is a
point of X and yR* ¢ U, then there is a neighborhood V of y such that
2R* ¢ U for all points z of V.

Proof. There is a t€R* such that yt¢U. Since X—U is a neigh-
borhood of yz, there exists a neighborhood V of y such that VicX— 7.
Then V is a desired neighborhood.

TueoreM 3.1 Let M be an asymptotically stable compact subset of X.
Then there exists a continuous nonnegative real valued function f defined
on A(M) such that f vanishes exactly on M, and that f(xt)<f(z) for
all points x of A(M)—M and all positive real numbers t.

£

Proof. Let D be the set of all rationals Ir of form S 0<_2k;n31,



A stability in topological dynamics 73

By Lemma 2.1, there exists a countable neighborhood base {U() :
reD} of M satisfying

1 U@ =AW)| and

@) if r1<ry then UGrp U ().

Define a function g: A(M)—R* by g(z)=inf{reD: zR*cU@)}.
Clearly, 0<g<1. Let zeM. For any r€D, since zR*CcMcU(),
g(x) <r. Thus g(z)=0. Let z€ A(M)—M. We can choose an reD
such that z&U(r). Then g(z) =r>0. Thus g vanishes exactly on M.
Let us show that g is continuous on M. Given any ¢>>0, there exists
a number r&D such that r<(e. Since M is stable, there exists a neig-
hborhood V of M such that VR*CU(r). Since g(V)c(—ege), g is
continuous on M. We further show that g is continuous at each point
z in A(M)—M. There are two possibilities;

(1) In case g(z) =1, given any ¢>0, we can choose an r&D such
that 1—e<r<{1. Since zR*¢U(r), by Lemma 3.3, there is a neigh-
borhood V of z such that yR*¢U(@#) for all yeV. Then g(V)c
(1—e¢, 1+¢).

(2) In case g(z) <1, given any ¢>0, we choose ry, 7,€ D such that
g@) —e<ri<g(x) <r,<lg(z)+e. Since zR*CU(ry), there is a neig-
hborhood V; of x such that ViR*CU(r,) by Lemma 3.2. By Lemma
3.3, there exists a neighborhood V, of x such that yR*¢ U () for all
yeV, since zR*¢TU(ry). Let V=V;NV, Then V is a neighborhood
of z and g(V)c (g(z) —¢, g(z) +€). Thus g is continuous. We claim
that g(zt) <g(z) for all ze A(M) and teR*. Suppose that g(z£)>
g(z) for some z&A(M) and t=R*. We can choose an r& D such that
g(x) <r<g(at). Since (xt) Rt=z[t, 0)CczR*cU(), g(at) <r. This
is a contradiction. Thus g(zz) <g(z) for all zeA(M) and zeR".

Define a function f: A(M)—R* by

f(z) =J:e"’ g (zs)ds.

Clearly, f is continuous and vanishes exactly on M. It remains to prove
that f(at) <f(z) for all 2€ A(M)—M and £>0. Since g((zt)s)=
g((zs)t) <g(zs) for all seR*, f(at) <f(z). To rule out f(at) =1 (2),
observe that in this case we must g(z(t+s)) =g ((x£)s) =g (as) for all
s€R*. In particular, letting s=0,2,2¢ ..., we get g(z(nt)) =g(2),
n=1,2,... Given any r&D, since z€A(M), by Lemma 3.1, there
exists an s&€R* such that z[s, ) CU(r). Since nt— oo as n—oo, mi
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=>s for some m. Since
(x(mt)) R =z[mt, o0) Czls, o) CU(),
gl@)=g(x(mt)) <r. Thus g(z)=0. But as z€A(M)—M, we must

g(@)>>0, a contradiction. We have thus proved that flat)<f(z). The
theorem is proved.

Tueorem 3.2 Let M be an asymptotically stable compact invariant subset
of X. Then there exists a continuous function f : A(M)—R* such that f
vanishes exactly on M, and that f(xt) =e tf(x) for all xc AM) and
al teR.

Proof. By Theorem 3.1, there exists a continuous function g : A(M)
—R* such that g vanishes exactly on M, and that g(xt) <<g(z) for all
z€ A(M)—M and all £>0. Since A(M) is a neighborhood of M, we
can choose a neighborhood U of M such that UcA(M) and U is
compact. Set a=min g(@U). Clearly, a>0. Let V=g"1[0,a). Then
V is a neighborhood of M. Suppose that V¢ T and choose a point
zeV—T. Since z&Vcg™1[0,a]C A(M), there exists a number s>0
such that z[s, ) CU by Lemma 3.1. Thus we can choose a £>0 such
that zt€dU. Since a<g(at) <g(x) <a, we have a contradiction. This
shows that VC U. We claim that a0V N @V)¢t=o for all £>0. Suppose
that 9V N @V)t+ @ for some £>0. Then there exists an 28V such
that zr€dV. Since dVC g 1(a), a=g(xt) <g(z) =a. This is a contradi-
ction. Thus 3VN @V)t=@ for all £>0. We will show that for every
z€A(M)—M, there is unique ¢ R such that zt€dV. There are three
possibilities;

(1) In case z¢V, by Lemma 3.1, there is an s>>0 such that z[s,
o0) C V. Thus we can choose a >0 such that 2z<oV.

(2) In case z€0V, a0=zx<oV.

(3) In case z€ V, assume that zRC V. Since zRCV is compact,
L (@>xo. If L"(x) nMx ¢, then we can choose an yeL (z) N M.
There exists a sequence (¢,) in R~ such that z,—>—oco and zz,—y.
Since g(z) <g(xzt,) for all n, g(z) <g(y)=0, this is a coniradiction.
Thus L™ (z) NM=. Choose a point z€L (z). Since L*(:) CzRc
L (z), L* () N M= . But L* (z) is nonempty and contained in M because
of zeL (z) cxBcVcA(M). This is a contradiction. Thus zR¢ V.
Hence we can choose a t& R such that z¢€8V. The uniqueness of such
¢t can be obtained from the fact that 9V N @V)t=C for all £>0.
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Define - a function m : A(M)—M—R by zm(z) €0V. Let 2€A(M)
—M. Given any :t€R, since (at) (m(z) —t) =zm(z) €0V, m(xt) =
m(z) —¢t. Thus m(xt) >+ o0 as t—>Foo. We will show that m is con-
tinuous. Given any z€A(M)—M and £>0, since z(m(z) +e) €V,
W=V (—m(z) —¢) is a neighborhood of z. For all yeW; ym(x)
+¢) €V implies m(y) <m(z)+e. Since z(m(z) —e) €X—V, W,=(X
—V) (—m(z) +e) is a neighborhood of z. For all y&W,, »(m(z)—¢)
€X—V implies m(z) —e<m(y). Let W=W;N W, Then W is a nei-
ghborhood of z and m(z) —e<lm(y) <m(z) +¢ for all yeW. Thus m
is continuous.

Define a function f: A(M)—R* by

@ if reAM)—M

f@= 0 if zeM.

We will show that f is continuous. It is sufficient to show that f is
continuous on M. Suppose that there exists an €0 such that fF(U) ¢
[0,¢) for all neighborhoods U of M. There is a TR~ such that
¢T<e. For each neighborhood U of M, f(U) [0, ") and so m(U— M)
¢ (—oo, T). Since X is ¢-first countable, there is a countable neighbo-
rhood base {V, : n=1, 2, ...} of M. We may assume that VO V;DV,>...
For each n, since m(V,—M) ¢ (—oo, T), there is an z,€ V,—M such
that T<m(z,) <0. There is a y&M such that z,—y. (m(z,)) is a
sequence in [ 7,0]. Since [T, 0] is compact, (m(z,)) has a convergent
subsequence. Let m(z,) —t<[T,0]. Then z,m(z,) >yt M and yt<oV.
This is a contradiction. Thus for each ¢>0, there is a neighborhood
U of M such that f(U) c[0,¢). Hence f is continuous on M. Clearly,
f vanishes exactly on M. For any z€A(M) and t€R,

f (xt) =em(.rt) — em(.z) —t— e—tem(.z) :e—tf (x) .
Thus the theorem is proved.

Lemma 3.4 Let M be a compact subset of X, U an invariant neighbo-
rhood of M and f: U—R* a continuous function such that f vanishes
exactly on M and f(xt) =e¢*f(z) for all z€U and t€R. If K is a
compact positively invariant subset of U then K is contained in A(M).

Proof. Let z& K. Since zR*CK is compact, L™ (z)*x . Let y&
L*(z). Take a £>0. Since y¢t=L*(z), there are sequence (¢,), (s,) in
R* such that z,—00, s,—c0, zt,—y and xs,—yt. We may assume that

t,>s, for all n. Since f(xt,) < f(zs,), f(3) <f(yt). Since f(y2) <f (),
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F) =f(yt)=e*f(y). Thus f(y)=0 and so y=M. Hence L*(z) CM.
Therefore z€ A(M). ’

Tueorem 3.3 Let M be a compact invariant subset of X. If there exists
a continuous nonnegative real valued function f defined on an invariant
neighborhood U of M such that f vanishes exactly on M, and that f(xt)
=eif (x) for all points x of U and all real numbers t, then M is asy-
mptotically stable and U=A(M).

Proof. Given any neighborhood V of M, we can choose a neighbo-
rhood W; of M such that W;cUNV and W, is compact. Let a=min
F@Wy. Then a>0. Let W=f"10,a). Then WCW; and W is a
positively invariant neighborhood of M. Thus M is stable. We can
choose a neighborhood V of M such that Vc U and V is compact. Let
a=min f(@V). Then a>0. Take a number r such that 0<r<{s, and
let W=f"1[0,r]. Then WCV and W is compact positively invariant.
By Lemma 3.4, WCA(M). Given any z<U, if z€ W, then z&
AM), and if 2 W, then f(z)>r. There is a £>0 such that f(xz) =
e*f(x) =r. Since K=zR"UW=z[0,JUW 1is a compact positively
invariant subset of U, by Lemma 3.4, KCA(M) and so z€A(M).
Thus Uc A(M). Given any z€A(M), since U is a neighborhood of
M, by Lemma 3.1, there is a t=R* such that =z&U. Since U is
invariant, z=(zt) (—t) €U. Hence A(M)=U and so A(M) is a nei-
ghborhood of M. Therefore M is asymptotically stable.
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