
J. Korean Math. Soc. 25(1988), No.I, pp. 67-76

A STABILITY IN TOPOLOGICAL DYNAMICS

jONG-SUH PARK

1. Introduction

THEOREM. Let (X, <p) be a flow whose phase space X is a locally compact
metric space. Then a compact invariant subset M of X is asymptotically
stable if and only if there exists a continuous nonnegative real valued
function f defined on an invariant neighborhood U of M such that f
vanishes exactly on M, and that f(xt) =e-tf(x) for all points x of U
and real numbers t [1].

In this paper we introduce the concept of a c-first countable space
which is a more general concept than that of a metric space, and extend
the above theorem to the case that the phase space X is c-first countable
and locally compact. All spaces are assumed to be Hausdorff.

2. C-first countable spaces.

DEFINITION. A space X is said to be c-first countable if for each compact
subset K of X the quotient space XIK is first countable.

Let X be a c-first countable space. Given any compact subset K of
X, there exists a family U consisting of countably many neighborhoods
of K such that every neighborhood of K contains some member of U.
Such a family U will be called a countable neighborhood base of K.

THEOREM 2. 1 Every second countable space is c-first countable.

Proof. Let X be a second countable space. There exists a countable
basis r!6 for X. Given any compact subset K of X, let U be the family
of all neighborhoods of K which are finite unions of members of r!6.
Then U is a countable neighborhood base of K. Thus X is c-first
countable.
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The converse of the above theorem is not true as shown by uncount­
able discrete spaces. Clearly, every c-:6.rst countable space is :6.rst coun­
table but its couverse does not hold.

EXAMPLE 2.1. Let X o= {(x, 0) : xER} and Xl = {(x, 1) : xER} be
two subsets of the plane R2. We take a basis t€ for the topology on
the set X=XOUX1 as follow;

t€= {{(x, I)} : xER} U {B(x, r) : xER, r>O}

where B(x, r) = {(y, 0) : Ix-yl <rl U {(y, 1) : 0< Ix-y I<rl. It is clear
that X is :6.rst countable. We claim that X is not c-:6.rst countable. Let
us choose a compact subset K = {(x, 0) : xE I} of X where I is the unit
interval. For each neighborhood U of K, let leU) = {xEl: (x, 1) $. U}.
Suppose that leU) is in:6.nite for some neighborhood U of K. leU)
has a cluster point, say y, in 1. Since (y, 0) EKe U, there exists a
number r>O such that B(y, r) cU. Since y is a cluster point of leU),
thereisanumberzEl(U) such that O<ly-zl<r. Since (z,l)EB(y,r)
c U, we have a contradiction. Thus I (U) is :6.nite for all neighbo­
rhoods U of K. Let Uh U2, U3, ••• be neighborhoods of K. Since I(Un)

00

is :6.nite for all n, A= U I(Un) is countable. Thus there is a number
n=1

wE I-A. Let V = X oU {(x, 1) : x =# w}. Then V is a neighborhood of
K and Un et V for all n. Thus there is no countable neighborhood base
of K. Hence X is not c-:6.rst countable.

THOEREM 2. 2. Every metric space is c-first countable.

Proof. Let (X, d) be a metric space. Given any compact subset K of

X, it is easy to show that the family {B(K, ~) :n = 1, 2, 3, ...} is a

countable neighborhood base of K, where B(K, ~) = {XE X : d (K, x)

< ~ }. Thus X is c-:6.rst countable.

The converse of the above theorem is not true. The following exam­
ple shows that there exists a c-:6.rrt countable and locally compact space
which is not a metric space.

EXAMPLE 2.2. For each irrational x, we choose a sequence (xn) of



A stability in topological dynamics 69

rationals converging to it in the Euclidean topology. The rational seq­
uence topology won R is then defined by declaring each rational open,
and selecting the sets Un (x) = {Xi: i=n, n+1, n+2, ...} U {x} as a basis
for the irrational point x. The space (R, w) is Hausdorff, locally com­
pact and not metrizable [2J . We will show that (R, w) is c-first coun­
table. Let K be a compact subset of R. If K -Q is infinite, where Q is
the set of rationals, then the open cover {UI (x) : xEK-Q} U {Q} of K
has no finite subcover, this is a contradiction. Thus K -Q is finite, say
K-Q= {Xl, x2, ••• , xm}. Let U be aneighborhood of K. For each i=1, 2,
..., m, since xiEK-Qc U-Q, there is an ni such that Un; (xi) cU.

Let N=max ni' Then .91 UN (xi) U (KnQ) cU. Thus L91 Un (xi) U (K

nQ) : n=1, 2, ...} is a countable neighborhood base of K. Hence (R,

w) is c-first countable.

LEMMA 2.1. Let X be a c-first countable and locally compact space,
and let K be a compact subset of X. For each neighborhood U of K,
there exists a countable neighborhood base {U(r) : rED} of K such that

(1) U (1) = U, and that

(2) if 1"1<r2, then U (rl) C U (r2)

where D is the set of all rationals of form ;n' 0< ;n ~ 1-

Proof. Let us show that for each rE D we can associate a neighbo­
rhood U(r) of K satisfying the above conditions (1) and (2). We
proceed by induction on exponent of dyadic fractions, letting Un=

{U( ;n) :k=1, 2, ..., 2n}. There exists a countable neighborhood base

{Vm :m=1,2, ...} of K. We may assume that V I ::)V2 ::) ••• and VI

compact. There is an ml such that Vml C U. UI consists of U ( ~ ) = V ml

and U (1) = U. Assume Un-1 constructed. Note that only U ( ;n) for

odd k requires definition. There is an mn>mn-l such that Vm.C

U(2!-I)' We define u( in )= Vm.. For each odd k*1, we have from

Un- 1 that U( k 2.1 ) c U (k~1 ), so we define U (;n) to be an open

set V satisfying
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U ( k2n
1 ) C V C VC U ( k~1 )

and V compact. This completes inductive step. Given any neighborhood

W of K, there is an n such that VmIl= U ( ~ ) C W. Thus the family

{U(r) : rED} is a countable neighborhood base of K.

THEOREM 2. 3. Let X be a locally compact space. Then X is c-first
countable if and only if for each compact subset K of X there exists a
continuous nonnegative real valued function f defined on X such that f
vanishes exactly on K.

Proof. (~) By Lemma 2.1, there exists a countable neighborhood
base {U(r) : rED} such that U(I) =X, and that if rl<rZ then U(rl)
c U(rz). Define a function f: X~R+ by f(x) =inf {rED: xE U(r)}.
Clearly, O::S;:f::S;:l. It is easy to show that f vanishes exactly on K.
Given any e>O, we can choose an rED such that r<e. Since f(U(r))
C (-e, e), f is continuous on K. We will show that f is continuous at
xEX-K. There are two possibilities;

Case 1. f(x) <1; Given any e>O, we can choose rl and rz in D
such that f(x) -e<rl<f(x) <rz<f(x) +e. Then U(rz) -U(rl) is a
neighborhood of x and f(U(rz) - U(rl)) c (f(x) -e,J(x) +e).

Case 2. f(x) =1; Given any e>O, there exists a number rED such
that l-e<r<l. Then X-U(r) is a neighborhood of x and f(X-U(x))
c (l-e, 1+e). Thus f is continuous.

(¢:l) There exists a neighborhood U of K such that [j is compact.

For each positive integer n, the set Un=f-{O, ;) nU is a neighborh­

ood of K. Given any neighborhood V of K, suppose that Unet V for
all n. For each n, we can choose an xnE Un- V. Since [j is compact,
the sequence (xn) in [j has a convergent subsequence. Let X n-4X. It is

clear that xEX- V and f(xn)-4f(x). Since f(xn) <1.- for all n,J(xn)
n

~O. Thus f(x) =0 and so xEK. This is a contradiction. So Unc V
for some n. Hence the family {Un: n=l, 2, ...} is a countable neighbo­
rhood base of K.
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3. Asymptotic stability

Throughout this section (X, q;) is a flow whose phase space X is c­
first countable and locally compact.

For a point x of X, the positive (negative) limit set L+(x) (L-(x»
of x defined by

L+ (x) = n x[t, 00) (L- (x) = n x( - 00, t])
tER+ tER-

where R+ (R-) denotes the set of nonnegative (nonpositive) real num­
bers. It is easy to show that yEL+(x) (L-(x») if and only if there is
a sequence (tn) in R+ (R-) such that tn---"'oo (- 00) and xtn---"'y. Obv­
iously, the set L+(x) (L-(x)) is invariant. Furthermore, the set L+(x)
(L- (x)) is nonempty whenever xR+ (xR-) is compact. A subset M of
X is said to be stahle if for each neighborhood U of M, there exists a
neighborhood V of M such that VR+ cU. It is clear that a stable set
is positively invariant. For a subset M of X, the region of attraction
A(M) is defined by A(M) = {xEX : L+(x)*~cM}. Note that A(M)
is invariant. A subset M of X is called an attractor if the set A (M)
is a neighborhood of M. When a subset M of X is stable and an
attractor, the set M is said to be asymptotically stable.

LEMMA 3.1 Let M be a compact subset of X. Then xEA(M) if and
only if for each neighborhood U of M there exists a tER+ such that
x[t, 00) cU.

Proof. (¢) Let xEA(M) and U a neighborhood of M. We can
choose a neigborhood V of M such that Vc U and V compact. Suppose
that for each tER+ there is an s'2.t such that xsf/= U. Then there is
an rl21 such that xrlEX-UCX-V. Since xEA(M), there exists a
tl>rl such that xtl E V. We can choose an SI such that rl<SI<tl and
XSI E 0V where 0V is the boundary of V. By the same way we can
choose r2, t2 and S2 such that

r2'2.max(2,tl)' xr2EX-V, xt2EV, r2<s2<t2andxszEoV,

and so on. Thus we obtain a sequence (sn) in R+ such that Sn---"'OO and
XSnE/1V for all n. Since oV is compact, the sequence (xsn) has a
convergent subsequence. Let xSn---"'z E /1V. Since z E L+ (x) eMc V, we
have a contradiction, Thus there is atE R+ such that x [t, 00) C U.
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(¢:J) There exists a neighborhood U of M such that D IS compact.
We can choose a tER+ such that x[t, 00) cU. Since

xR+=x[O, t] Ux[t, 00) cx[O, t] U D,
xR+ is compact. Thus L+(x) =/=t/J. To show L+(x) cM, suppose that
there exists an yEL+(x) -M. There are neighborhoods V of M and
Wof y such vn W=t/J. We can choose a tER+ such that x[t, 00) C V.
Since Wnx[t, 00) =t/J, y$x[t,oo) and so y$L+(x). This is a contra­
diction. Thus L+(x) cM. Hence xEA(M).

LEMMA 3.2 Let a compact subset M of X be asymptotically stable and
U a neighborhood of M. For any point x of A (M), if xR+ c U, then
there exists a neighborhood V of x such that VR+ c U.

Proof. Since M is stable, there is a neighborhood UI of M such that
U1R+ cU. By Lemma 3.1, there is an sER+ such that xes, 00) c Uh
we can choose a neighborhood WI of x such that WISC U1. For each
tE [0, s], since xtE U, there exist neighborhoods Vt of x and It of t
such that VtItc U. There are finitely many O::::;;th t2, ••• , t.. ::::;;s such that

[0, s] c UIti" Let W 2= nVt;' Then W 2 is a neighborhood of x. Given
;=1 i=1

any yE W z and tE [0, s], since tEIt; for some i, ytE Vt,It;C U. Thus
W2 [0, s] C U. Let V = WI n W 2• Then V is a neighborhood of x. From
the fact that

yeO, s]cW2 [O, s]cU and Yes, 00) c W1[s, 00) = (W1s)R+c U1R+cU

we have VR+=V[O,s] UYes, 00) cU.

LEMMA 3. 3 Let U be a neighborhood of a point x of X. If y is a
point of X and yR+ et D, then there is a neighborhood V of y such that
zR+ et D for all points z of V.

Proof. There is a tER+ such that yt$ D. Since X - D is a neigh­
borhood of yt, there exists a neighborhood V of y such that VtcX - D.
Then V is a desired neighborhood.

THEOREM 3. 1 Let M be an asymptotically stable compact subset of X.
Then there exists a continufnls nonnegative real valued function f defined
on A(M) such that f vanishes exactly on M, and that f(xt) <f(x) for
all points x of A (M) - M and all positive real numbers t.

Proo~. Let D be the set of all rationals rr of form k 0< k < 1
'J - 2ft'"2"- .
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By Lemma 2.1, there exists a countable neighborhood base {U(r) :
rED} of M satisfying

(1) U(l) =A(M)I and
(2) if rl<r2 then U Crl) C U (r2) .

Define a function g: A(M)~R+ by g(x) =inf{rED : xR+c U(r)}.
Clearly, O::;;g::;;l. Let xEM. For any rED, since xR+cMc UCr) ,
g(x) ::;;r. Thus g(x) =0. Let xEA(M) -M. We can choose an rED
such that x$U(r). Then g(x) ~r>O. Thus g vanishes exactly on M.
Let us show that g is continuous on M. Given any e>O, there exists
a number rED such that r<e. Since M is stable, there exists a neig­
hborhood V of M such that vR+c U(r). Since g(V) c (-e, e), g is
continuous on M. We further show that g is continuous at each point
x in A (M) - M. There are two possibilities;

(1) In case g(x) =1, given any e>O, we can choose an rED such
that 1-e<r<1. Since xR+<tU(r), by Lemma 3.3, there is a neigh­
borhood V of x such that yR+ <t U(r) for all yE V. Then g(V) c
(l-e,l+e).

(2) In case g(x) <1, given any e>O, we choose rh r2ED such that
g(x)-e<rl<g(x)<r2<g(x)+e. Since xR+CU(r2), there is a neig­
hborhood VI of x such that VIR+c U(r2) by Lemma 3.2. By Lemma
3.3, there exists a neighborhood V 2 of x such that yR+ <t U (rl) for all
y E V 2 since xR+ <t U (rl)' Let V = VI n V 2. Then V is a neighborhood
of x and g(V) c (g(x) -e, g(x) +e). Thus g is continuous. We claim
that g(xt) ::;;g(x) for all xEA(M) and tER+. Suppose that g(xt»
g(x) for some xEA(M) and tER+. We can choose an rED such that
g(x) <r<g(xt). Since (xt)R+=x[t, 00) cxR+c U(r) , g(xt) ::;;r. This
is a contradiction. Thus g(xt) ::;;g(x) for all xEA(M) and tER+.

Define a function f: A(M)~R+ by

f(x) = f~e-sg(xs)ds.

Clearly, f is continuous and vanishes exactly on M. It remains to prove
that f(xt)<f(x) for all xEA(M)-M and t>O. Since g«xt)s)=
g«xs)t) ::;;g(xs) for all sER+, f(xt) ::;;f(x). To rule out f(xt) -f(x) ,
observe that in this case we must g(x(t+s)) =g«xt)s) =g(xs) for all
sER+. In particular, letting s=O, t, 2t, ..., we get g(x(nt)) =g(x),
n=1, 2, ... Given any rE D, since xE A (M), by Lemma 3. 1, there
exists an sER+ such that x[s,oo)cU(r). Since nt~oo as n~oo, mt
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~ s for some m. Since

(x(mt»R+=x[mt, 00) cx[s, 00) C U(r),

g(x) =g(x(mt» s;,r. Thus g(x) =0. But as xEA(M) -M, we must
g (x) >0, a contradiction. We have thus proved that f(xt) <f(x). The
theorem is proved.

THEOREM 3. 2 Let M be an asymptotically stable compact invariant subset
of X. Then there exists a continuous functionf: A(M)-R+ such that f
vanishes exactly on M, and that f(xt) =e-tf(x) for all xEA(M) and
all tER.

Proof. By Theorem 3. 1, there exists a continuous function g : A (M)
-R+ such that g vanishes exactly on M, and that g(xt) <g(x) for all
xEA(M) -M and all t>O. Since A(M) is a neighborhood of M, we
can choose a neighborhood U of M such that [j C A (M) and D is
compact. Set a=min g(oU). Clearly, a>O. Let V=g-l[O, a). Then
V is· a neighborhood of M. Suppose that Vet D and choose a point
xEv-D. Since XEVCg-1[0,a]CA(M), there exists a number s>O
such that xes, 00) c U by Lemma 3. 1. Thus we can choose a t>O such
that xtEOU. Since as;,g(xt) <g(x) s;,a, we have a contradiction. This
shows that V C D. We claim that aV n (0 V) t= 0 for all t>O. Suppose
that ovn (oV)t:;t: 0 for some t>O. Then there exists an XEOV such
that xtEOV. Since oVCg-1(a), a=g(xt) <g(x)=a. This is a contradi­
ction. Thus ovn (oV)t= 0 for all t>O. We will show that for every
xEA(M) -M, there is unique tER such that xtEOV. There are three
possibilities;

(1) In case xf/= V, by Lemma 3. 1, there is an s>O such that xes,
00) c V. Thus we can choose a t>O such that xtEOV.

(2) In case xEOV, xO=xEOV.
(3) In case xE V, assume that xRc V. Since xRcV is compact,

L-(x)~0. If L-(x) nM~0, then we can choose an yEL-(x) nM.
There exists a sequence (tn) in R- such that tn-- 00 and xtn-y.
Since g(x) s;,g(xtn) for all n, g(x) s;,g(y) =0, this is a contradiction.
Thus L-(x) nM=0. Choose a point zEL-(x). Since L+(z)czRc
L-(x), L+ (z) nM= 0. But L+ (z) is nonempty and contained in M because
of zEL-(x) c:;HcVcA(M). This is a contradiction. Thus xRet V.
Hence we can choose a teR such that xtEOV. The uniqueness of such
t can be obtained from the fact that ovn (oV)t= 0 for all t>O.
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Define a function m: A(M)-M~R by xm(x) EOV. Let xEA(M)
- M. Given any tER, since (xt) (m(x) -t) =xm(x) EOV, m(xt) =
m(x) -t. Thus m(xt)~+oo as t~+oo. We will show that m is con­
tinuous. Given any xEA(M) -M and e>O, since x (m(x) +e) E V,
W1= V(-m(x) -e) is a neighborhood of X. For all yE Wit y(m(x)
+e)EV implies m(y)<m(x)+e. Since x(m(x)-e) EX-V, W 2=(X
- Y) (-m(x) +e) is a neighborhood of X. For all yE W 2, y(m(x) -e)
EX-V implies m(x)-e<m(y). Let W=W1nW2• Then W is a nei­
ghborhood of x and m(x) -e<m(y) <m(x) +e for all yE W. Thus m
is continuous.

Define a function f: A(M)~R+ by

_{em<X) if xEA(M)-M
f(x) - 0 if xEM.

We will show that f is continuous. It is sufficient to show that f is
continuous on M. Suppose that there exists an e>O such that feU) et
[0, e) for all neighborhoods U of M. There is a TER- such that
eT<e. For each neighborhood UofM, f(U)et[O,eT) and so m(U-M)
et (- 00, T). Since X is c-first countable, there is a countable neighbo­
rhood base {Vn : n=l, 2, ...} of M. We may assume that V:J V1:J V2 :J ...
For each n, since m(Vn-M) et (-00, T), there is an xnE Vn-M such
that Ts;,m(xn) s;,0. There is a yEM such that Xn~Y. (m(xn» is a
sequence in [~OJ. Since [~OJ is compact, (m(xn» has a convergent
subsequence. Let m(xn)~tE[~0]. Then xnm(xn)~ytEMand ytEOV.
This is a contradiction. Thus for each e>O, there is a neighborhood
U of M such that feU) c [0, e). Hence f is continuous on M. Clearly,
f vanishes exactly on M. For any xEA(M) and tER,

f(xt) =emCxO = emCx)-t = e-temCx)=e-tf(x).

Thus the theorem is proved.

LEMMA 3. 4 Let M be a compact subset of X, U an invariant neighbo­
rhood of M and f: U~R+ a continuous function such that f vanishes
exactly on M and f(xt) =e-tf(x) for all xE U and tER. If K is a
compact positively invariant subset of U then K is contained in A eM).

Proof. Let xEK. Since xR+cK is compact, L+(x) ~ 0. Let yE

L+(x). Take a t>O. Since ytEL+(x), there are sequence (tn), (sn) in
R+ such that tn~oo, Sn~OO, xtn~y and xSn~yt. We may assume that
tn':?.sn for all n. Sincef(xtn) s;,f(xsn), f(y) s;,f(yt). Sincef(yt) sf(y),
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f(y) =f(yt) =e-tf(y). Thus f(y) =0 and so yEM.Hence L+(x) eM.
Therefore xEA(M).

THEOREM 3. 3 Let M be a compact invariant subset of X. If there exists
a continuous nonnegative real valued function f defined on an invariant
neighborhood U of M such that f vanishes exactly on M, and that f(xt)
=e-tf(x) for all points x of U and all real numbers t, then M is asy­
mptotically stable and U=A (M).

Proof. Given any neighborhood V of M, we can choose a ,neighbo­
rhood WI of M such that W1e un v and WI is compact. Let a=min
f(i1WI). Then a>O. Let W=f-I[O,a). Then weWI and W is a
positively invariant neighborhood of M. Thus M is stable. We can
choose a neighborhood V of M such that Ve U and V is compact. Let
a=min f(i1V). Then a>O. Take a number r such that o<r<a, and
let W=f-I[O, r]. Then We V and W is compact positively invariant.
By Lemma 3.4, WeA(M). Given any xEU, if xEW, then xE
A(M), and if xf/:. W, then f(x»r. There is a t>O such that f(xt) =
e-tf(x) =r. Since K =xR+ u W =x[O, t] U W is a compact positively
invariant subset of U, by Lemma 3.4, KeA(M) and so xEA(M).
Thus UeA(M). Given any xEA(M), since U is a neighborhood of
M, by Lemma 3.1, there is a tER+ such that xtE U. Since U is
invariant, x=(xt) (-t)EU. Hence A(M)=U and so A(M) is a nei­
ghborhood of M. Therefore M is asymptotically stable.
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