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H-Closed Spaces and W-Lindelof Spaces

JoNG-SUH PARK

ABSTRACT. We introduce the concept of a w-Lindelof space
which is a more general concept than that of a Lindelof spaces.
We obtain some characterization about H-closed sapces and
w-Lindelof spaces. Also, we investigate their invariance prop-
erties.

1. Introduction

In section 2, we obtain a characterization of H-closed spaces using
the results in [1] and show that H-closedness is invariant under the
o-continuous surjections.

In section 3, we introduce the concept of a w-Lindeldf space which
is a more general concept than that of a Lindelof space. We give
a counterexample and one characterization of the w-Lindelof prop-
erty. Finally, we show that the product of a H-closed space and a
w-Lindelof space is w-Lindelof.

2. H-Closed spaces
DEFINITION 2.1 A space X is said to be H-closed if for each open
cover {U;} of X there are finitely many ¢ such that X = JC1(U;,).

DEFINITION 2.2 Let X be a space. A net (z;) in X is said to

w-accumulate to a point z of X, denoted by z; & , if for any neigh-
borhood U of z and 7 there is an ¢; > 7 such that z;, € C(U). A net

(z;) in X is said to w-converge to a point z of X, denoted by z; = z,
if for each neighborhood U of z there is an i; such that z; € CI(U)
for all 7 > 1.

It is easy to show that the following lemma holds.
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LEMMA 2.1. Let X be a space. If an ultranet (z;) in X w-accu-
mulates to a point ¢ of X, then (z;) w-converges to z.

DEFINITION 2.3 Let X be a space. For a subset A of X the w-
closure Cl,(A) of A is defined by the set

Cl,(A)={z € X | ANCIU) # 0 for all neighborhoods U of z}.

It is clear that A C CI(A) C Cl,(4).

LEMMA 2.2. Let X be a space and A a subset of X. Then x €
Cly,(A) if and only if there is a net (z;) in A such that z; =z

PROOF. (=) Let (U;) be the family of neighborhoods of = with the
reverse inclusion order. For each i, since AN Cl(U;) # 0, there is an
z; € ANCIU;). Then (z;:) is a net in A and z; ey

(<) Given any neighborhood U of z, there is an iy such that z; €
CYU) for all ¢ > 7;. Since z;, € ANCYU), ANCLU) # 0. Thus
z € Cl,(4).

DEFINITION 2.4 Let X be a space. A subset A of X is said to be
w-closed if Cl,(A) = A.

LEMMA 2.3. Let {X;} be a family of spaces. A net ((z¥)) in I1X}
w-converges to a point (z¥) of I1X} if and only if the net (zF) in X}
w-converges to the point ¥ of X for all k.

PROOF. (=) Let U be a neighborhood of z*. Since p; (V) is a
neighborhood of (z¥), there is an 4; such that (z¥) € Cl(p;'(U)) =
pi ' (CY(U)) for all 4 > 4;. Thus z¥F € CI(U) for all ¢ > i;.

(<) Let n p,:jl(Uj) be a basic neighborhood of (z*). There is an
i=1
i1 such that =¥ € Cl(U;) for all 7 > 4;. Thus we have

@ e r@wy =c( g wy)

for all ¢ > ;.

DEFINITION 2.5 A space X is said to be completely Hausdorff if
for any two distinct points z and y of X there are neighborhoods U

of z and V of y such that Cl(U) N CI(V) = 0.
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THEOREM 2.4. Let X be a space. Then the following statements
are equivalent.

(1) X is completely Hausdorff.
(2) Every net in X w-converges to at most one point of X.

(3) The diagonal A = {(z,z) |z € X} is w-closed in X x X.

PROOF. (1) = (2) Suppose that a net (z;) in X w-converges to two
distinct points z and y of X. Since X is completely Hausdorff there
are nelghborhoods U of z and V of y such that C(U) N C(V) = 0.

Since z; 2, z and z; = y, there is an 7; such that z;, € Cl(U) and
zi, € CI(V). Thus CI(U) N CI(V) # 0, this is a contradiction.
(2) = (3) Let (z,y) € Clw(A) There is a net (z;) in X such that
(zi, i) = (z,y). Since z; 2 2 and z; — y, z =y. Thus (z,y) € A.
(3) = (1) Let = and y be two distinct points of X. Since (z,y) ¢
A = Cl,(A), there is a neighborhood W of (z,y) such that A N

CY(W) = 0. Also, there are neighborhoods U of z and V of y such
that U x V. C W. It is clear that CI(U) N CI(V) = 0.

DEFINITION 2.6 Let X be a space. A family {4;} of subsets of X
is said to satisfy the s-finite intersection condition if for any finitely

many %, [ Int(4;,) # 0.

The following is a characterization of H-closed spaces [1].

THEOREM 2.5. A space X is H-closed if and only if for each family
{Ai} of closed subsets of X satisfying the s-finite intersection condi-

tion, (1 Ai # 0.

LEMMA 2.6. Let X be a H-closed space. Then for each net (z;) in
X there is an ¢ € X such that x; xz.

w
PROOF. Suppose that z; ¢ = for all z € X. For each z € X there
is a neighborhood U, of ¢ and an i, such that z; ¢ ClU,) for all
¢ > tz. Then {U,} is an open cover of X. Since X is H-closed, there
are finitely many z; such that X = |JCI(U,,). There is an ¢; such
that iy > i;,. Then z;, € |JCI(U,,) = X, this is a contradiction.

Thus there is an ¢ € X such that z; & .

Our characterization of H-closed spaces is the following.
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THEOREM 2.7. A space X is H-closed if and only if every net in
X has a w-convergent subnet.

PROOF. (=) Let (z;) be a net in X. Since every net has an ul-
trasubnet, (z;) has an ultrasubnet (z;,). By lemma 2.6, there is an
z € X such-that z;, & z. Therefore we have T, e by lemma 2.1.

(<) Given any family A of closed subsets of X satisfying the s-finite
intersection condition, set {A;} be the family of finite intersections of
members of A. Clearly, A C {A;}. Define :; < i3 by 4;, C A;,. For
each i, since Int(4;) # 0, there is an z; € Int(4;). Then (z;) is a
net in X. Since (z;) has a w-convergent subnet, we may assume that
T; Seex. Suppose that [ A4; = 0. Since = ¢ (] A;, there is an ¢;

such that ¢ € A;,. Since X — A;, is a neighborhood of z and z; Bl z,
there is an i, > %; such that z;, € CI(X — 4;,). But

Ti, € Int(A,'z) - Int(A,'l) =X - CI(X — Ai1)

and so we have a contradiction. Thus [ 4; # 0. Since [A4; C A,
(A # 0. By theroem 2.5, X is H-closed.

THEOREM 2.8. Let X be a H-closed space. If A is a w-closed
subset of X, then A is H-closed.

PROOF. Let (z;) be a net in A. Then (z;) is a net in X. Since X

w
is H-closed, (z;) has a w-convergent subnet. Let z; — z € X. Since

z € Cl,(A) = A, A is H-closed.
It is easy to show that the following theorem holds.

THEOREM 2.9. Let X be completely Hausdorff space. Then every
H-closed subset of X is w-closed.

DEFINITION 2.7 Let X and Y be spaces. A function f: X — Y
is said to be o-continuous at a point z of X if for each neighborhood

Uof f(z) there is a neighborhood V' of = such that f(Cl(V)) C CI(U).

f is said to be o-continuous if f is o-continuous at all z € X.

Clearly, continuous functions are o-continuous. o-continuity is char-
acterized by the w-convergence property in the following.



H -cLoOSED sPACES AND W .LINDELOF SAPCES 59

THEOREM 2.10. Let X and Y be spaces. A function f : X - Y
is o-continuous at * € X if and only if for any net (z;) in X which
w-converges to ¢ the net (f(z;)) in Y w-converges to f(z).

PROOF. (=) Given any neighborhood U of f(z), there is a neigh-
borhood V of z such that f(Cl(V)) C CI(U). Also, there is an 7; such
that z; € CI(V) for all ¢ > ¢;. Since f(z;) € f(CYV)) C CLU) for all
i > 1y, we have f(z;) = f(z).

(<) Suppose that f is not o-continuous at . Then there is a neigh-
borhood U of f(x) such that f(Cl(V)) ¢ CI(U) for all neighborhoods
V of . Let (V;) be the family of neighborhoods of z with the re-
verse inclution order. For each i, since f(Cl(V;)) ¢ CLU), there is
an z; € CI(V;) such that f(z;) € CI(U). Then the net (z;) in X w-
converges to = but the net (f(z;)) in Y does not w-converge to f(x).
Thus we have a contradiction. Hence f is o-continuous at z.

DEFINITION 2.8 Let X and Y be spaces. A function f: X — Y is
said to have w-closed graph if its graph G(f) = {(z, f(z)) |z € X} is
w-closed subset of X x Y.

THEOREM 2.11. Let X and Y be spaces. A function f : X —» Y
has a w-closed graph if and only if for any net (z;) in X, z; e e X
and f(z;) B y € Y implies y = f(z).

PROOF. (=) Since ((z;, f(z;))) is a net in G(f) and (z;, f(=;)) =
(z,9), (z,9) € Clu(G(f)) = G(f). Thus y = f(z).
(<) Let (z,y) € Cly(G(f)). There is a net (z;) in X such that

(zi, f(z4)) = (z,y). Since z; 2 ¢ and f(z:) R Y, y = f(z). Thus
(z,y) € G(f). Hence G(f) is w-closed.

THEOREM 2.12. Let Y be a completely Hausdorff space. Then
every o-continuous function f : X — Y has a w-closed graph.

PROOF. Let (z,y) € Cly(G(f)). There is a net (z;) in X such
that (2, f(z;)) = (z,y). Then z; = z and f(zi) i y. Since f is

o-continuous at z, f(z;) = f(z). Since Y is completely Hausdorft,
y = f(z). This implies (z,y) € G(f). Hence G(f) is w-closed.

The converse of the above theorem does not hold.
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THEOREM 2.13. LetY be a H-closed space. If a function f : X —
Y has a w-closed graph, then f is o-continuous.

PROOF. Let (z;) be a net in X and z; 2z € X. Since Y is H-
closed, the net (f(z;)) in Y has a w-convergent subnet by theorem 2.7.

Let () 5 y € Y. Since (2, f(2:) = (2,0), (2,9) € Cla(G() =
G(f). Thus y = f(z) and so f(z;) — f(z). This means that f is
o-continuous at z.

The o-continuous image of a H-closed space is also H-closed.

THEOREM 2.14. Let X be a H-closed space and Y a space. If
f: X =Y is a o-continuous surjection, then Y is H-closed.

PROOF. Let (y;) be a net in Y. For each ¢, there is an z; € X
such that y; = f(z;). Since X is H-closed, there is a subnet (z;,) of

(zi) and an ¢ € X such that z;, s 2. Since f is o-continuous at ,
f(z:,) — f(z). Thus Y is H-closed.

THEOREM 2.15. Let {Xi} be a family of sapces. Then IIX is
H-closed if and only if X}, is H-closed for all k.

PROOF. (=) By theorem 2.14, X} isH-closed for all k.

(<) Let (z;) be a net in IIX}. For each k, since (pr(z;)) is a net in
Xy and Xy is H-closed, (pr(z;)) has a w-convergent subnet. We may
assume that pr(z;) = zr € Xi. Let ¢ = (zx) € IIXy. Then z; 2 e
Thus I1.X; is H-closed.

3. W-Lindelof spaces

DEFINITION 3.1 A space X is said to be w-Lindelof if for each open
cover {U;} of X there are countably many ¢ such that X = (J Cl(U;,).

Clearly the Lindelof property implies the w-Lindelof property. But
the following example shows that the converse need not hold.

EXAMPLE. Let X = {(z,y) e R? |y > 0}. For any (z,y) € X
and r > 0, let

B.(z,y)ify>0andr <y

N.(z,y) = { Br(.’E,'f') U {(J,',O)} U BT(O,'P) if y =0.
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We take {N,(z,y)} as a basis for the topology. We shall show that
X is not Lindelof. Let

U = {Ni(z,y) l z € R,y > 1} U {Ny(z,0) | z € R}.

Then U is an open cover of X. Note that (2,0) & Ny(z,y) ify > 1
and (2,0) € Ny(z,0) if z # 2. Thus U has no countable subcover.
This implies that X is not Lincelof.
Let us show that X is w-Lindelof. Given any open cover U of X,
let
B1 = {B € | there is an U € U such that B C U}

where 8 = {N,(z,y) | z, y and r are rational numbers, 0 < r < y}.
Clearly, 3, is countable and so we let 8; = {B,}. For each n, there is
an U, € U such that B, C U,,. Also, there exists a V € U such that
(0,0) € V. We shall show that X = | Cl(U,,)UCLV). Let (z,y) € X.

Case 1 : y > 0. There is an U € U such that (z,y) € U. Also,
there is a positive rational number r such that No.(z,y) C U. We
have (a,b) € N, (z,y) for some rational numbers a and b. Then

({t,y) € Nr(aa b) C NZr(w, y) cU.
Thus N,(a,b) € §; and so N,(a,b) = B, for some n;. Therefore
(2,y) € Bn, C Uy, C CUn,).

Case 2: y = 0. For any neighborhood W of (z,0) thereisanr; > 0
such that N, (z,0) C W. Since V is a neighborhood of (0, 0), there is
an rp > 0 such that N,,(0,0) C V. It is clear that W NV # 0. Thus
(z,0) € CI(V). Hence X is w-Lindeldf.

In regular spaces, w-Lindelofness implies Lindelof.

THEOREM 3.1. Let X be a regular space. If X is w-Lindeldf, then
X is Lindeldf.

PROOF. Let {U;} be an open cover of X. For each z € X, there is
an 7, such that 2 € U;_. Since X is regular, there is a neighborhood
V, of z such that Ci(V,) C U;,. Then {V,} is an open cover of
X. Since X is w-Lindelof, there are countably many zj; such that
X =ClV,,) C UUi,. This proves that X is Lindelof.

Now we obtain a characterization of w-Lindelof spaces.
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THEOREM 3.2. A space X is w-Lindelof if and only if for each
family {A;} of closed subsets of X satisfying (|Int(A;,) # 0 for all
countably many ix, [ A:i # 0.

PROOF. (=) Let [14i = 0. Since X = X -0 =X -(NA4; =
U(X = A;), {X — A;} is an open cover of X. Since X is w-Lindeldf,
there are countably many i) such that X = |JCI(X — A;x). Then

P=X-X=X-|JCUX~4;,)=\X-CUX-4;,)) = Int(A4,).

This is a contradiction. Thus (] 4; # 0.

(=) Suppose that X is not w-Lindelof. There is an open cover
{U;} of X such that | JCl(U;,) # X for all countably many ;. Since
{X — U;} is a family of closed subsets of X and

NInt(X — Us,) = (X = CUU,)) = X — | JCUUs,) # 0

for all countably many i, ((X — U;) # 0. Then JU; = X — (X —
Ui) # X. This is a contradiction. Thus X is w-Lindelof.
DEFINITION 3.2 Let X be a space. A filter 4 in X is said to w-

accumulate to a point & of X, denoted by A x z, if ANCIU) # 0 for
all neighborhoods U of z and A € A.

THEOREM 3.3. Let X be a space. The following statements are
equivalent.
(1) X is w-Lindelof.
(?) For any open filterbase {U;} in X, if (U;, # 0 for all count-
ably many iy, then there is a point * of X such that {U;}
w-accumulates to x.

PROOF. (1) = (2) Suppose that {U;} ;”é z for all ¢ € X. For each
z € X, there is a neighborhood V, of z and 7, such that C1(V,)NU;, =
0. Clearly, U;, ¢ X—Cl(V,,)and {V,} is an open cover of X. Since X
is w-Lindelof, there are countably many zx such that X = |J Cl(V,).
From the observation of

Ui, X -CUV,,)) =X - JCUV,,) =X - X =0,
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we have (JU;,, = 0. This is a contradiction. This proves (2).

(2) = (1) Suppose that X is not w-Lindelof. Then there is an open
cover {U;} of X such that | JCI(U;,) # X for all countably many i.
Let U be the family of open subsets of X containing (J(X —CYU;,)) for
some countably many i. Since [J(X — Cl(U;,)) = X —JCYU;,) # 0
for all countably many 2x, U/ is an open filterbase in X satisfying
the countable intersection condition. By (1), there is an z € X such
that Y & z. Then z € U;, for some 7;. Since X — CI(U;,) € U,
(X — CIU;,)) N CYU;,) # 0. This is a contradiction. Thus X is
w-Lindelof.

For the invariance property of w-Lindelof spaces, we have

THEOREM 3.4. Let X be a w-Lindel6f space and Y a space. If
f: X =Y is a continuous surjection, then Y is w-Lindelof.

PROOF. Let {U;} be an open cover of Y. Then {f~!(U;)} is an
open cover of X. Since X is w-Lindelof, there are countably many 2,

such that X = |JCIl(f~(U;,)). Thus we have

v = £x) = £ (UL wa)))
=Uf Cl f_ Ui,c CUCI ff_l (Ulk)) =UC1(Uik)'

Consequently, Y is w-Lindelof.

The product of two w-Lindelof spaces need not be w-Lindelof. How-
ever, we improve this by imposing H -closedness.

THEOREM 3.5. Let X be a w-Lindeléf space and Y a H-closed
space. Then the product space X x Y is w-Lindelof.

PROOF. Let {W;} be an open cover of X x Y. For each (z,y) €
X x Y, there is an i(x,y) such that (z,y) € Wi, ). Also, there are
neighborhoods Uy, 4) of z and V{, 4y of y such that U, )y X V() C
Wi(z,y)- Clearly, {V(zy) | ¥ € Y} is an open cover of Y. Since
Y is H-closed, there are finitely many yi,...,¥Yn(s) such that ¥ =
n(z) n(z)
| CUViery;))- Let Uz = [ Uga,y;)- Then U, is a neighborhood of
J=1 J=1
z and

Uz X Viz,y;) C Ulz,y5) X Viz,y5) € Wiz,
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for all j = 1,...,n(z). Since X is w-Lindelof, for an open cover
{U, | ¢ € X}, there are contably many z;,z2,... such that X =

U Cl(U,,). Then we have

k=1
‘ s n(zk) oo n(Tk)
XxY = U U Cl(Ug, ) x C1 (V(rk,yj)) - U U Cl (Wi(rk'”i’)

k=1 j=1 k=1 j=1

Thus X x Y is w-Lindelof.

Finally, w-Lindelofness and o-compactness are equivalent in locally
compact spaces.

THEOREM 3.6. Let X be a locally compact space. Then X is w-
Lindelof if and only if X is o-compact.

PROOF. (=) For each z € X there is a neighborhood U, of = such
that Cl(U,) is compact. {U,} is an open cover of X. Since X is
w-Lindelof; there are countably many zj such that X = (JCl(Uy,).
Thus X is o-compact.

(=) It is clear.
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