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IT-Closed Spaces and VT-Lindelof Spaces

Jong-Suh Park

ABSTRACT. We introduce the concept of a w-Lindel6f space 
which is a more general concept than that of a Lindelof spaces. 
We obtain some characterization about 及-closed sapces and 
w-Lindel6f spaces. Also, we investigate their invariance prop­
erties.

1. Introduction

In section 2, we obtain a characterization of H-closed spaces using 

the results in [1] and show that」Ef-closedness is invariant under the 

a-continuous surjections.

In section 3, we introduce the concept of a w-Lindelof space which 

is a more general concept than that of a Lindelof space. We give 

a counterexample and one characterization of the w-Lindelof prop­

erty. Finally, we show that the product of a -closed space and a 

w-Lindelof space is w-Lindel6f.

2. H-Closed spaces

DEFINITION 2.1 A space X is said to be H-closed if for each open 

cover {Ui} of X there are finitely many ik such that X = (JCl(?7jfc).

DEFINITION 2.2 Let X be a space. A net (⑬) in X is said to 
w

w-accumulate to a point x of X, denoted by Xi oc ⑦, if for any neigh­

borhood U of x and i there is an > i such that E Cl(i7). A net 

(:rj in X is said to w-converge to a point x of X, denoted by ——> :c, 

if for each neighborhood U of x there is an 허 such that Xi E Cl(?7) 

for all i > ii.

It is easy to show that the following lemma holds.
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LEMMA 2.1. Let X be a space. If an ultranet (:以) in X w-accu­

mulates to a point x of X, then (xi) w-converges to x,

DEFINITION 2.3 Let X be a space. For a subset A of X the w- 

closure C1W(A) of A is defined by the set

C1W(A) = {xeX\AQ C1(Z7) 羊 0 for all neighborhoods U of x}.

It is clear that A C C1(A) C C1W(A).

Lemma 2.2. Let X be a space and A a subset of X. Then x G 

C1W(A) if and only if there is a net (:rj in A such that ——> x.

PROOF. (=) Let (t&) be the family of neighborhoods of x with the 

reverse inclusion order. For each z, since A A Cl(l&) 羊 0, there is an 

Xi E Ar\ C1(L&). Then (:c；) is a net in A and Xi ―> x.

(<=) Given any neighborhood U of there is an ii such that Xi 6 

C1(17) for all i > z；. Since — G An C1(Z7), A n C1(Z7) 羊 0. Thus 

⑦ e C1W(A).

DEFINITION 2.4 Let X be a space. A subset A of X is said to be 

w-closed ii C1W(A) = A,

LEMMA 2.3. Let {A%} be a family of spaces. A net ((：【$)) in TlXk 

w-converges to a point (xk) ofUXk if and only if the net (:zg) in Xk 

w-converges to the point xk of Xk for all k.

PROOF. (=) Let 17 be a neighborhood of xk. Since p구1 (U) is a 

neighborhood of (⑦人), there is an ii such that (⑦수) E Cl (p구1 (L『)) = 

까1 (Ciq7)) for all i > 허. Thus 사 £ C1(Z7) for all i>iT.
n

(<=) Let P) 四구사) be a basic neighborhood of (甘). There is an 

J=i
ii such that E Cl(Uj) for all i > Thus we have

(4)e n =ci( n 易(凶)
j=i 乂 j=i 7

for all i > ii，

DEFINITION 2.5 A space X is said to be completely Hausdorff if 

for any two distinct points x and y of X there are neighborhoods U 

of z and V of y such that Cl(i7) A C1(F) = 0.
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THEOREM 2.4. Let X be a space. Then the following statements 

are equivalent.

(1) X is completely HausdorfF.

(2) Every net in X w-converges to at most one point of X.

(3) The diagonal A = {(⑦, x) \ x E X} is w-closed, in X x X.

PROOF. (1) => (2) Suppose that a net (:rj in X w-converges to two 

distinct points x and y of X. Since X is completely HausdorfF there 

are neighborhoods U oi x and V oi y such that C1(L『) Pl C1(V) = 0.
w w

Since Xi —> x and Xj ——> y, there is an ii such that E C1(17) and 

⑦h € C1(V). Thus Cl(L『j Cl C1(V) 羊 0, this is a contradiction.

(2) = (3) Let (x,y) E C1W(A). There is a net (:囚) in X such that

Xi) ——> (x丁y). Since Xi ―> x and Xi — y, x = y. Thus (⑦，이) E A.

(3) = (1) Let x and y be two distinct points of X. Since (rr, y) 우 
A = C1W(A), there is a neighborhood W of (⑦, y) such that A「1 

Cl(TF) = 0. Also, there are neighborhoods U oi x and V of y such 

that 17 x V C VF. It is clear that C1(U) A C1(V) = 0.

DEFINITION 2.6 Let X be a space. A family {AJ of subsets of X 

is said to satisfy the s-finite intersection condition if for any finitely 

many 자, nint(Aifc) / 0.

The following is a characterization of H-closed spaces [1].

THEOREM 2.5. A space X is H-closed if and only if for each family 

{』4j} of closed subsets of X satisfying the s-finite intersection condi­

tion^ Q 八 斗 0.

LEMMA 2.6. Let X be a H-closed space. Then for each net (xi) in 

X there is an x E X such that Xi oc x.

w
PROOF. Suppose that x for all x E X. For each x E X there 

is a neighborhood Ux of x and an ix such that Xi 유_ C1(Z7X) for all 

i > ix. Then {Ux} is an open cover of X. Since X is H-closed, there 

are finitely many Xk such that X = |J There is an 허 such

that ii > iXfc. Then 오 |J C\(UXk) = X, this is a contradiction. 

Thus there is an ⑦ 6 X such that Xi x.

Our characterization of H-closed spaces is the following.
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THEOREM 2.7. A space X is H-closed if and only if every net in 

X has a w-convergent subnet.

PROOF. (=) Let (:Ci) be a net in X. Since every net has an ul~ 

trasubnet, has an ultrasubnet (:=)• By lemma 2.6, there is an 
w w

x 6 X such that Xik oc x. Therefore we have Xik —> x by lemma 2.1.

(스=) Given any family A of closed subsets of X satisfying the 3-finite 

intersection condition, set {Ai} be the family of finite intersections of 

members of A- Clearly, A C {八}. Define ⑤ by Ai2 C A^. For 

each i, since Int(Ai) 羊 0, there is an Xi G Int(Ai). Then (乳) is a 

net in X. Since (乳) has a w-convergent subnet, we may assume that 
w

Xi ——+ x E X. Suppose that「) 八 = 0. Since x 오 H 刀b there is an i1
. . . w

such that x 우 Air. Since X — is a neighborhood of x and Xi —> ⑦, 

there is an 츠 之 Al such that 乳2 6 C1(X — A^). But

Xi2 G Int(Ai2) C IntpliJ = X — C1(X —』4辻)

and so we have a contradiction. Thus「| 八 尹 0. Since「| 八 C「| 八 
QX 斗 0. By theroem 2.5, X is -closed.

THEOREM 2.8. Let X be a H-closed space. If A is a w-closed 

subset of X, then A is H-closed.

PROOF. Let (:Ci) be a net in A. Then (:rj is a net in X. Since X 

is JI<losed, (:rj has a w-convergent subnet. Let —> x E X. Since 

x G C1W(A) = A, A is -closed.

It is easy to show that the following theorem holds.

THEOREM 2.9. Let X be completely HausdorfFspace. Then every 

H-closed subset of X is w-closed.

DEFINITION 2.7 Let X and Y be spaces. A function / : X — V 

is said to be a-continuous at a point a: of X if for each neighborhood 

Uof f(x) there is a neighborhood V of x such that /(C1(V)) C Cl(l『). 
f is said to be a-continuous if f is a-continuous at all x E X.

Clearly, continuous functions are a-continuous. a-continuity is char­

acterized by the w-convergence property in the following.
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THEOREM 2.10. Let X and Y be spaces. A function f : X Y 

is a-continuous at x E X if and only if for any net (:rj in X which 

w-converges to x the net (/(⑬)) in Y w-converges to /(⑦).

PROOF. (=) Given any neighborhood U of /(⑦), there is a neigh­

borhood V oi x such that /(C1(V)) C Cl(i!7). Also, there is an ii such 

that Xi E C1(V) for all i > Since /(어) G /(C1(V)) C C1(J7) for all 
w

z > we have f(xi) ——•> f(x).

(<=) Suppose that f is not cr-continuous at ⑦. Then there is a neigh­

borhood U of f(x) such that /(C1(V)) q_ C1(L『) for all neighborhoods 

V of t. Let (Vi) be the family of neighborhoods of x with the re­

verse inclution order. For each z, since /(Cl(VJ)) (jL Cl(?7), there is 

an Xi E Cl(lQ) such that f(xi) 生 Cl({7). Then the net (:z:J in X w- 

converges to x but the net (/(짜)) in Y does not w-converge to f(x). 

Thus we have a contradiction. Hence f is cr-continuous at x.

DEFINITION 2.8 Let X and Y be spaces. A function f : X Y is 

said to have w-closed graph if its graph G(f) = {(⑦, /(⑦)) | x G X} is 

w-closed subset of X x K.

THEOREM 2.11. Let X and Y be spaces. A function f : X Y 

has a w-closed graph if and only if for any net (xi) in X, Xi ——> x E X 

and f(xi) ——> y EY implies y = f(x).

w
PROOF, (=>) Since ((⑦心/(쯔))) is a net in G(f) and (⑦心/(쩌)) 一—> 

(z,?/) G C1W(G(/)) = G(f). Thus y = f(x).

(<=) Let (a:, y) 6 Clw((구(/)). There is a net (亂) in X such that 
w w w

(⑦i,/(⑦J) ―> (⑦,?/). Since Xi ——> x and f(xi) —> y, y = /(⑦). Thus 

(x,y) E G(f). Hence G(f) is w-closed.

THEOREM 2.12. Let Y be a completely HausdorfF space. Then 

every a-continuous function f : X — Y has a w-closed graph.

PROOF. Let (:r,y) € Clw((구(/)). There is a net (別) in X such 
w w w

that (：2江,/(⑷)) 一> (⑦, y). Then Xi ——> x and f(xi) ——> y. Since f is 
w

cr-continuous at :r, f(xi) —> f(x). Since Y is completely HausdorfF, 

y = /(rr). This implies (x,y) E G(f). Hence G(j) is w-closed.

The converse of the above theorem does not hold.
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THEOREM 2.13. Let Y be a H-closed space. If a function f : X

Y has a w-closed graph, then f is o-continuous.

PROOF. Let (꼬) be a net in X and Xi ——> x E X. Since Y is in­

closed, the net (/(⑦寸) in Y has a w-convergent subnet by theorem 2.7. 
w w

Let f(xi) —> y e V. Since (以,/(⑬)) 一+ O，y), 0，?/) e Clw(G(f)) = 
w

G(f). Thus y = f(x) and so f(xi) —► f(x). This means that f is 

(7-continuous at x.

The(7-continuous image of a H-closed space is also Zf-closed.

THEOREM 2.14. Let X be a H-closed space and Y a space. If 

f : X Y is a a-continuous surjection, then Y is H-closed.

PROOF. Let (yi) be a net in Y. For each i, there is an 쩌 G X 

such that yi = /(에 Since X is H-closed, there is a subnet (:z:江 ) of 
w .

(:亂) and an ⑦ G such that xik —> x. Since f is <7-continuous at :r, 

f(xik) -—> /(⑦). Thus Y is If-closed.

THEOREM 2.15. Let {Xk} be a family of sapces. Then ILX丁 is 

H-closed if and only if Xk is H-closed for all k.

PROOF. (=>) By theorem 2.14, Xk isZf-closed for all k,

(스=) Let (j：i) be a net in ILX]. For each k, sinceis a net in 

Xk and Xk is H-closed,(0(쩌)) has a w-convergent subnet. We may 
w w

assume that > W G Let x = (:z：k) 6 ILX丁. Then Xi ―> x.

Thus ILXk is H-closed.

3. VT-Lindelof spaces

DEFINITION 3.1 A space X is said to be w-Lindelof if for each open 

cover {Ui} of X there are countably many 휴 such that X = [j Cl(Uik).

Clearly the Lindelof property implies the w-Lindelof property. But 

the following example shows that the converse need not hold.

EXAMPLE. Let X = {(鉛,이) E \ y > 0}. For any (⑦, y) e X 

and r > 0, let

Nr(x,y) =
j/) if ?/ > 0 and r < y

Br(x, r) U {(能, 0)} (J Br(0, r) if y = 0.



Jf-CLOSED SPACES AND VT-LINDELOF SAPCES 61

We take lNr(x. u)} as a basis for the topology. We shall show that 

X is not Lindeldf. Let

U = {N^x.y) \ x e R,y > 1} U {A『i(：r,0) \ x e R} •

Then U is an open cover of X. Note that (之, 0) 우 Ni(x,y) if y > 1 

and (之,0) 生 7\『i(:z:,0) if ⑦ 구〈 之. Thus U has no countable subcover. 

This implies that X is not Lindelof.

Let us show that X is w-Lindel6f. Given any open cover U of X, 

let

01 = {J3 G 0 | there is an G ZZ such that B C U}

where /3 = {Nr(x^ y) | ⑦, y and r are rational numbers, 0 < r < y}. 

Clearly, 0i is countable and so we let 0i = {Bn}. For each n, there is 

an (7n G ZZ such that Bn C Un. Also, there exists a V 6 Z7 such that 

(0,0) G V. We shall show that X = {J Cl(/7n)UCl(V). Let 0, y) e X.

Case 1 : y > 0. There is an (7 G Z/ such that (⑦, y) 6 U. Also, 

there is a positive rational number r such that A『2r(：z스?/) C U. We 

have (a, 6) E Nr(x^ y) for some rational numbers a and b. Then

(⑦, y) e Nr(a, b) C N2r(x, y) C U.

Thus Nr(a, b) € 伍 and so Nr(a, b) = Bni for some nj. Therefore

Gmz) e Bni c uni c ci(i『ni).

Case 2 : y = 0. For any neighborhood W of (⑦, 0) there is an r1 > 0 

such that 7\『ri(a:,0) C W. Since V is a neighborhood of (0,0), there is 

an r2 > 0 such that A『r2(0,0) C V. It is clear that W QV 夫 0. Thus 
0,6 e C1(V). Hence X is w-Lindeldf.

In regular spaces, w-Lindelofness implies Lindeldf.

THEOREM 3.1. Let X be a regular space. If X is w-Lindeldf, then 

X is Lindeldf.

PROOF. Let {Ui} be an open cover of X. For each x E there is 

an ix such that x E Uix. Since X is regular, there is a neighborhood 

14 of a〉such that C1(I4) C Uix. Then {KJ is an open cover of 

X. Since X is w-Lindelof, there are countably many such that 

X = (JC1(KJ C[jUik. This proves that X is Lindeldf.

Now we obtain a characterization of w-Lindelof spaces.
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THEOREM 3.2. A space X is w-Lindelof if and only if for each 

family {Ai} of closed subsets of X satisfying p|Int(A江) / 0 for all 

countably many 孔, QAi 斗 0.

PROOF. (=) Let p|Ai = 0. Since X = X — $ = X — =

|J(X — 八), {X — Ai} is an open cover of X. Since X is w-Lindel6f, 

there are countably many such that X = (J C1(X — 八人). Then

0 = X—X = X—|JC1(X—A江) =C1(X—AJ) = Qlnt(Aifc).

This is a contradiction. Thus Q Aj 0.

(=) Suppose that X is not w-Lindeldf. There is an open cover 

{Ui} of X such that |J Cl(l『江 ) 羊 X for all countably many ik- Since 

{X — Ui} is a family of closed subsets of X and

f|Int(X - Uik) = Q(X — Cl(tU) = X — (JCl(t&J 羊 0

for all countably many ik, 0(入 一 尿) 羊 0* Then [JUi = X - Q(조 一 
Ui) X. This is a contradiction. Thus X is w-Lindelof.

DEFINITION 3.2 Let X be a space. A filter X in X is said to w- 

accumulate to a point x of X, denoted by X oc if AD C1(17) 羊 0 for 

all neighborhoods U of x and A E A.

THEOREM 3.3. Let X be a space. The following statements are 

equivalent.

(1) X is w-Lindelof,

(?) For any open filterbase {Ui} in X, if Q Uik 羊 0 for all count­

ably many ik, then there is a point x of X such that {Ui} 

w-accumulates to x.

w
PROOF. (1) = (2) Suppose that {Ui} 9^ x for all x E X. For each 

x E there is a neighborhood Vx of x and ix such that Cl(Vx)r]Uik = 

0. Clearly, Uik C X —C1(V；人 ) and {14} is an open cover of X. Since X 

is w-Lindelof, there are countably many such that X = (J C1(V丁 ). 
From the observation of

n uixk c n(x _ ci(kj)=入 _ u ci(kj=호 _ x=0, 
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we have「|仏까 = 0- This is a contradiction. This proves (2).

(2) = (1) Suppose that X is not w-Lindelof. Then there is an open 

cover {Ui} of X such that |J Cl(l7ifc) =4 X for all countably many 江. 
Let U be the family of open subsets of X containing p|(X—Cl(l『孔)) for 

some countably many ik- Since QG우 —(시습)) = 互 一 U(기«『江) 羊 0 

for all countably many U is an open filterbase in X satisfying 

the countable intersection condition. By (1), there is an rr € X such 

that U 씨 x. Then x G Uir for some Since X — Cgl&J E Z/, 
(X — Ciq7iJ) n Ciq/i j / 0. This is a contradiction. Thus X is 

w-Lindel6f.

For the invariance property of w-Lindelof spaces, we have

THEOREM 3.4. Let X be a w-Lindeldf space and Y a space. If 

f : X Y is a continuous surjection, then Y is w-Lindelof.

PROOF. Let {Ui} be an open cover of Y. Then is an

open cover of X. Since X is w-Lindelof, there are countably many 心 
such that X = (J Cl(/~1(l7ifc)). Thus we have

y = f(x)= /(|Jci(/-Wj))

= U/(cW-1(i순))) c UC1(//-1 (巧)) = UC1( 囚)•

Consequently, Y is w-Lindelof.

The product of two w-Lindelof spaces need not be w-Lindelof. How­

ever, we improve this by imposing Zf-closedness.

THEOREM 3.5. Let X be a w-Lindelof space and Y a H-closed 

space. Then the product space X xY is w-Lindelof.

PROOF. Let {Wi} be an open cover of X x V. For each (x,y) G 

X x there is an i(:r,y) such that (:r,v) G Also, there are

neighborhoods U(x,y)of x and 以心,幼) of y such that U(x,y)x V(x>2/)C 

W^Xyy). Clearly, {V},아) | y G K} is an open cover of Y. Since 

Y is -closed, there are finitely many j/i,..., yn(x) such that Y = 

n(x) n(x)

(J〈시仁,하)). Let 까 = P) U(x,y心. Then Ux is a neighborhood of 

j=i i=i
x and

ILr x 乃飮,刀) 仁 U(x,yj) x 乃:Mj) 仁 比(aw) 
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for all j = l,...,n(:r). Since X is w-Lindelof, for an open cover 

{Ux | x G X}, there are contably many :己心⑦沙 … such that X = 
oo
[J Cl(UXk). Then we have 

fc=i

oo n(xfc) oo n(xk)
xxy=U U CW가)xci(으…)) c U |J ci(比(유)).

k=l j=l k=l j=l

Thus X x y is w-Lindelof.

Finally, w-Lindelofness and(7-compactness are equivalent in locally 

compact spaces.

THEOREM 3.6. Let X be a locally compact space. Then X is w- 

Lindelof if and only if X is a-compact.

PROOF. (=) For each x E X there is a neighborhood Ux of x such 

that C1(UX) is compact. {Ux} is an open cover of X. Since X is 

w-Lindelof, there are countably many X]$ such that X = |J Cl(J7Xfc). 

Thus X is cr-compact.

(=) It is clear.
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