Generalized Zero in the Quotient Semiring

Young Hee Kim and Hee Sik Kim

Abstract. Using the notion [1] of Q-ideal in a semiring we study some properties, especially g-zero, of quotient semiring.

1. Introduction

Allen [1] introduced the notion of Q-ideal and constructed the quotient structure of a semiring modulo a Q-ideal and Kim [4] studied some properties of quotient semiring and Jeter [3] studied a generalized zero in a semigroup. With this concept we study a generalized zero in the quotient semiring. A semiring is an algebra ($R,+, \cdot, 0$) such that $(R,+)$ is a commutative semigroup, (R, \cdot) is a semigroup, 0 is the zero, i.e., $x+0=x$ and $x \cdot 0=0=0 \cdot x$ for every $x \in R$, and \cdot distributives over + from the left and right. A subset I of a semiring R is called an ideal if $a, b \in I$ and $r \in R$ implies $a+b \in I, r a \in I$ and $a r \in I$.

Definition 1.1 [1]. An ideal I in the semiring R is called a Q-ideal if there exists a subset Q of R satisfying the following conditions:
(1) $\{q+I\}_{q \in Q}$ is a partition of R; and
(2) if $q_{1}, q_{2} \in Q$ such that $q_{1} \neq q_{2}$, then $\left(q_{1}+I\right) \cap\left(q_{2}+I\right)=\emptyset$.

Lemma 1.2 [1]. Let I be a Q-ideal in the semiring R. If $x \in R$, then there exists a unique $q \in Q$ such that $x+I \subset q+I$.

Let I be a Q-ideal in the semiring R. In view of the above results, one can define the binary operations \oplus_{Q} and \odot_{Q} on $\{q+I\}_{q \in Q}$ as follows:
(1) $\left(q_{1}+I\right) \oplus Q\left(q_{2}+I\right)=q_{3}+I$ where q_{3} is the unique element in Q such that $q_{1}+q_{2}+I \subset q_{3}+I$; and
(2) $\left(q_{1}+I\right) \odot_{Q}\left(q_{2}+I\right)=q_{3}+I$ where q_{3} is the unique element in Q such that $q_{1} q_{2}+I \subset q_{3}+I$. The elements $q_{1}+I$ and $q_{2}+I$ in $\{q+I\}_{q \in Q}$ is called equal (denoted by $q_{1}+I=q_{2}+I$) if and only if $q_{1}=q_{2}$.

Theorem 1.3 [1]. If I is a Q-ideal in the semiring R, then

$$
\left(\{q+I\}_{q \in Q}, \oplus_{Q}, \odot_{Q}\right)
$$

is a semiring and denoted by R / I.
Theorem 1.4 [4]. Let I be a Q-ideal in the semiring R. If $q_{i}+I \in$ $R / I(i=1, \ldots, n)$, then

$$
\begin{aligned}
& \left(q_{1}+I\right) \oplus_{Q} \cdots \oplus_{Q}\left(q_{n}+I\right)=q^{*}+I \text { iff } q_{1}+\cdots+q_{n} \in q^{*}+I \\
& \left(q_{1}+I\right) \odot_{Q} \cdots \odot_{Q}\left(q_{n}+I\right)=q^{*}+I \text { iff } q_{1} \cdots \cdots q_{n} \in q^{*}+I
\end{aligned}
$$

2. Main results

Theorem 2.1. Let I be a Q-ideal of a semiring R with identity e. If $e \in q^{*}+I$ for some $q^{*} \in Q$, then $q^{*}+I$ is the identity of the quotient semiring R / I.

Proof. Since $e \in q^{*}+I$, there exists $i_{1} \in I$ such that $e=q^{*}+i_{1}$. For any $q+I \in R / I$ we have $q=q \cdot e=q\left(q^{*}+i_{1}\right)=q q^{*}+q i_{1}$. This means that $q+I \subset q q^{*}+I$. Let $(q+I) \odot_{Q}\left(q^{*}+I\right)=q^{\prime}+I$ where $q^{\prime} \in Q$. It means that $q q^{*}+I \subset q^{\prime}+I$. Hence $q+I \subset q^{\prime}+I$. By the definition of Q-ideal $q+I=q^{\prime}+I$. Therefore $(q+I) \odot \odot_{Q}\left(q^{*}+I\right)=q+I$ for any $q+I \in R / I$. Similarly we have $\left(q^{*}+I\right) \odot_{Q}(q+I)=q+I$. The uniqueness is trivial.

Definition 2.2 [2]. A division semiring R is a semiring with identity e such that for any non-zero a, there is an x in R with $a x=x a=e$.

Theorem 2.3. Let I be a Q-ideal of a division semiring R. Then the quotient semiring R / I is a division semiring.

Proof. Let $q^{*} \in Q$ with $e \in q^{*}+I$. For any $q+I \in R / I$ there exists $a \in R$ such that $q a=e=a q$, since R is a division semiring. Let $q_{a} \in Q$ with $a+I \subset q_{a}+I$. Then $a=q_{a}+i$ for some $i \in I$. Hence $\varepsilon=q a=q q_{a}+q i \in q q_{a}+I \subset(q+I) \odot_{Q}\left(q_{a}+I\right)$. By the definition of Q-ideal we have $q^{*}+I=(q+I) \odot_{Q}\left(q_{a}+I\right)$. Similarly we can see $\left(q_{a}+I\right) \odot_{Q}(q+I)=q^{*}+I$. This completes the proof.

Definition 2.4 [3]. An element z of a semiring R is called a generalized zero (or g-zero) if for all $a, b \in R$ it follows that $a z b=b z a$.

Theorem 2.5. Let R be a semiring having z as a g-zero. If I is a Q-ideal with $z \in q^{*}+I$ for some $q^{*} \in Q$, then the coset $q^{*}+I$ is a g-zero in the quotient semiring R / I.

Proof. For any $q_{1}+I$ and $q_{2}+I$ in R / I, let $\left(q_{1}+I\right) \odot_{Q}\left(q^{*}+\right.$ $I) \odot_{Q}\left(q_{2}+I\right)=q_{3}+I$ and $\left(q_{2}+I\right) \odot_{Q}\left(q^{*}+I\right) \odot Q\left(q_{1}+I\right)=q_{4}+I$ where $q_{3}, q_{4} \in Q$. By Theorem 1.4 we have $q_{1} q^{*} q_{2} \in q_{3}+I$ and $q_{2} q^{*} q_{1} \in q_{4}+I$. This means that $q_{1} q^{*} q_{2}=q_{3}+i_{1}$ and $q_{2} q^{*} q_{1}=q_{4}+i_{2}$ for some $i_{1}, i_{2} \in I$. Since $z \in q^{*}+I$, there exists $i_{3} \in I$ such that $z=q^{*}+i_{3}$. From this we can see that $q_{1} z q_{2} \in q_{3}+I$ and $q_{2} z q_{1} \in q_{4}+I$. Since z is a g-zero, $q_{1} z q_{2}=q_{2} z q_{1}$ and hence $\left(q_{3}+I\right) \cap\left(q_{4}+I\right) \neq \emptyset$. By the definition of Q-ideal $q_{3}+I=q_{4}+I$. We completes the proof.

Cororally 2.6. In the above Theorem 2.5, if z is an identity, then R / I is a commutative semiring with identity.

Proposition 2.7. Let R be a semiring with identity e and I be a Q-ideal with $e \in q^{*}+I$. If R has a property that for any q_{1} and q_{2} in Q there exists b in $q^{*}+I$ with $q_{1} q_{2}=b q_{2} q_{1}$, then R / I is a commutative.

Proof. It follows from Theorem 2.1 and Theorem 2.5.
Problem: Is the coset $q^{*}+I$ is a unique g-zero in R / I if z is a unique g-zero in the semiring R in Theorem 2.5 ?

References

1. P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Sco. 21 (1969), 412-216.
2. M. Henriksen, The $a^{n(a)}=a$ theorem for semirings, Math. Japon. 5 (1958), 21-24.
3. M. W. Jeter, Some brief comments concerning generalized zeros in semigroups, Kyungpook Math. J. 21 (1981), 263-266.
4. H. S. Kim, On quotient semiring and extension of quotient halfring, (to appear).
