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ABSTRACT

In order to overcome the disadvantages of linear filters in certain cases of practical interest, a class 

of nonlinear filters (rank filters) are constructed based on a class of robust estimates, the rank estimates. 
A subclass of these filters, the limited-degree extended-averaging Wilcoxon filters, is then described as an 
interesting example of the rank filters with desirable characteristics. The properties of these filters are 
discussed and the performance of these filters are analyzed for ideal edges and narrow pulses.

요 약

몇몇 실세석인 셩우에 나타나土 선힝 여弭시의 단선음 卩뫼、하기 위하L sbu泊주정량의 하나인 宁시 주정량에 근본 

을 눈 비선헝 여파기를 구현하였다. 특히 Wilcoxon 여나기외 확상 HHcexcn 여아기의 득성을 玉사하였고、 이상석인 

edge 입력 및 좁P pu方 입력에 대한 이들 여파기의 성능을 분석 검토하었다.

I. INTRODUCTION

Linear filters have been widely used for 
suppressing additive Gaussian noise in a stream 
of noisy input data composed of desired signals 
and noise in many signal processing schemes. 
The linear filters, however, give poor perform­
ance characteristics in certain situations of

Department of Electrical and FJlectromics Hiigineering 
Korea Advanced Institute of Science and Technology 
P. 0. Box 150, Cheongryangri, Seoul. 

practical interest. For example, they smear out 
edges and narrow pulses in the ori엉nal signal, 
resulting in blurred edges in an image, and they 
are also very poor in suppressing impulsive 
(heavy-tailed) noise.

In order to overcome these disadvantages 
of linear filters, nonlinear techniques have been 
proposed and shown to be effective in such 
situations [ 1-4J. Median filters, for example, 
have strongly nonlinear characteristics, being 
able to reject quite effectively impulsive noise 
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components while preserving edges in the original 
signal. Examples of applications of median filters 
can also be found in nonlinear speech processing 
and image processing [5,6]. Their deterministic 
as well as statistical properties have also been 
investigated in [7*■이., Efficient realizations for 
real-time median filtering and VLSI implementa­
tions of median filters have been considered 
quite recently in [10,11],

A median filter, however, does not in general 
allow the user a sufficient degree of control over 
its characteristics. Furthermore, median filters 

do not have the averaging operation that is 
particularly appropriate in reducing additive 
Gaussian noise components in noisy data; thus 
they may perforin poorly in Gaussian noise. 
Therefore, for a better overall performance 
when the signal has both edges and details and 
the noise has both Gaussian and impulsive com­
ponents, it is desirable to implement a filtering 
scheme with an algorithm that has both non­
linear and linear (averaging) characteristics.

Among the typical examples developed for 
this purpose are cascades of median and linear 
filters, the order-statistic (OS) filters or the L- 
filters [2,3], the M-filters [3], the K-nearest 
neighbor (KNN) filters [ 12], the symmetric 
nearest neighbor (SNN) mean filters, the sym­
metric nearest neighbor median filters [13] 
and the linear median hybrid (LMH) filters 
[14].

It is noteworthy that the L- and M- filters 
are based on classes of robust estimates [ 15,16], 
the L- and M- estimates, respectively. Since these 
two classes of robust estimates from statistical 
theory have successfully been exploited in the 
area of signal processing, it is quite natural to 
seek similar applications of the third m^jor 
class of robust estimates, the rank estimates 
(R-estimates) [17,18], of statistical theory. In 
this paper a new class of nonlinear discrete-time 
filters for edge-preservation, detail retention and 
Gaussian and impulsive noise reduction is con­
sidered as an application of a class of rank­
estimates in signal restoration.

II. THE RANK FILTERS

Our objective here is to define a new class 
of filters based on R-estimates, for use in res­
toration of signals containing edges and fine 
details, in addition to smoothly-varying portions, 
which are observed in additive noise containing 
impulses as well as Gaussian noise components.

One special form of finite impulse response 
(FIR) linear filtering is obtained when the output 
yx is the arithmetic average of N values in a 
processing window of size N . The median filter 
may be viewed as its more robust counterpart 
which is quite effective in impulsive environ­
ments but which is not as good for additive 
Gaussian noise smoothing. The concept of ro­
bustness is particularly appropriate in signal 
processing when the noise has impulsive com­
ponents (or outliers), since robustness implies 
insensitivity to a slight deviation (a small number 
of impulses) from a nominal assumption (usually 
of Gaussian noise). Such a robust scheme is also 
effective for edge preservation since near the 
start or the end of an edge the data in a window 
appears to contain a few impulses.

The main motivation of our investigation in 
this paper arises from the fact that there exist 
other classes of robust estimates in statistics 
which may function very well in our filtering 
problems. We will concentrate our attention on 
the class of R-estimates because this class of 
robust estimates is the third main class after L- 
and M-estimates. R-e아imates were originally 
derived from nonparametric hypothesis testin흥 

theory (which gives us, amongst other possibi­
lities, rank tests for testing shifts or location 
changes).

A general two-sample 아atistic for testing 
location shift between two samples may be de­
fined as [ 15]

Sgn U " K，, ) I

e in - n ' 1

where m and are the sizes of the two samples. 
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a (.) is a nondecreasing score function defined on 
(0,1) with a (t) - - a (1 i), (),、t、1 and R, is the 

rank of the i -th observation from the sample of 
size m in the pooled sample of size m - n . (That 
is, Rj is the number of observations less than 
or equal to the i -th observation.)

If the locations of the two samples are the 
same, the ranks of the observations from the 
first sample (a sample of size m ) are equally 
likely to be any set of m of the m + n integers 
)1, 2, m + n}, (Here a parameter g is called a 
location parameter if the distribution has the 
form f(x- Q丿 for a mathematically specified distri­
bution f .) On the other hand, if the location of 
the first sample is greater than Jhat of the second 
sample, the ranks of the observations from the 
first sample will tend to have larger values, 
resulting in a larger value for S^n on the average. 
Therefore by comparing Sm,n to a threshold that 
can be set a priori or varied adaptively (to satisfy, 
for example, a false-alarm probability criterion), 
a test for location difference for the two samples 
is obtained.

Since only one sample of size \ is available 
in each window in our problem of signal res­
toration, another set has to be defined from 
each of the original samples of size N before 
further processing in which such a rank statistic 
is used. For this purpose mirror-imaging of the 
sample in each window about a candidate loca­
tion value (estimate) may be employed.

Let be the candidate location estimate 
for the sample of size X centered on the K -th 
time index. We may center the original sample 

(X"기' x*5) to become、n -土, …, Xk.n 

vkand then take its mirror image ■■■.
y* xfc)n) as the second sample. Note that 

\& will be the output of an R-filter of window­
size N 2r)- 1 at time index k , for a discrete­
lime input sequence - I he uiitpui 上 is uial 
rank estimate that is calculate(t tn safisfv rhe 

implicit equation

SN,N - 0. ⑵ 

In essence, Equation (2) implies that an estimate 
of should be found so that the resulting 

ranks of elements of each of the two samples 
defined above, from the pooled sample, have 
statistic이ly similar values. In other words, if 

is an estimate of x* the centered and mirror- 
imaged or reflected samples will be located at 

the same point.
Note that sometimes it is impossible to 

achieve an exact zero in Equation (2), because 

of the discreteness of the expression SN. n . In 
this case we attempt to make SN, N as close to 
zero as possible. The discrete function a (,) 
plays an important role in the R-filter, determ­
ining its characteristics. By choosing appropriate 
forms for a (,), a number of special R-filters 
can be defined with characteristics different 
from one filter to another.

The essence of the operation of an R- 
filter is that what affects the output of the R- 
filter more is not the actual values of the data 
but their relative ranks in each processing win­
dow at any time index. Thus very large values 
such as produced by impulsive components will 
have much less of an effect on the output than 
they would have in linear filters that process 

actual values of the data.

III. THE WILCOXON FILTER AND ITS 
GENERALIZATIONS

In this section, our attention will be res­
tricted to a subclass of R-filters for which it 
is possible to derive useful and practical pro­
perties and explicit structures.

The Wilcoxon Filter

Some particular scores are well-known in 

statistical theory for their useful properties. 
For example. the nonnal scores function [171 

is ti；.. 1 , 0 t with 0 being the inverse of 
the standard normal distribution function. This 
results in asymptotically optimum Gaussian 
noise suppression. Another choice of interest, 
for its simplicity, is a limiter-type score function; 
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that is, a(t) = 1 for t>0.5,0 fort = 0.5 and-1 for 
t <0.5with the ranks of identical values defined 
to, be the averages of their ranks. This particular 
choice leads to the median filter which is opti­
mum for smoothing of noise with a double­
exponential probability density function (pdf), 
which is a very heavy-tailed pdf.

The linear score function, a (t) -= t 0.5, lies 
between the above two score functions and 
leads to the Wilcoxon filter [19]. In this case, 
it can be shown [ 15,19] that (2) can explictly 
be solved go give

median ('으으一, for (p, q) eH J (3)

which is the Hodges-Lehmann estimate [20]. 
Here H = U=I (p, q) : k—nWp,q 苴 k+n| . If
V = | (p, q) : k —n 冬pWq冬k + n l,or V = J (p, q) :k「 

n^p<q^k4 n|is used for H in (3) the resulting 
filter can be shown [15] to be asymptotically 
equivalent to the filter using H = U in (3). The 

estimate (3) represents a data-dependent L- 
filter with time-varying coefficients which are 
determined by the data in each window, at 
most two of which are nonzero. This is because 
at any time index k, if we denote the i -th 
order statistic as x[i], y* 

x[rj i-x[sj
will be —~~2-------- for some r and s , where

r and s depend on the data in each window. 
Note also that (3) represents a generalization of 
median filters with an inherent aveia응ing opera­
tion.

As has been shown in [19], (3) can be 
transformed when H=V to

k +n
2Z sign (xP y*)R (lxp vk|)- 0, *4p= k-n

where R (|Xp ■ ■»I) is the rank of IxP » I in the 
set! y* i, i -k n, k, k I Ji ；. It is clear 
from (4) that the Wilcoxon filter may also be 
interpreted as a time-varying M-filter.

The Limited-Degree Extended-A veraging Wil­

coxon (LEW) Filter

Even though the Wilcoxon filter has both 
linear (averaging) and nonlinear (median opera­
tion) characteristics, the edge-preserving and 
noise reduction properties of this filter are not 
remarkable. One reason for this mediocre edge 
performance of the Wilcoxon filter is that every 
possible pair of values in each window is averag­
ed; for example, a value on one side of an edge 
is averaged not only with a value on the same 

side but also with one on the other side, 
which results in smearing of the edge. A reason 
for the relatively mediocre Gaussian noise reduc­
tion characteristic is that the output of each 
window is an average of only two values, inde­
pendent of the actual size of the processing win­
dow.

The above considerations do offer some 
ideas for improving the performance characteri­

stics of the Wilcoxon filter. In particular, it 
would appear to be quite reasonable to modify 
나le Wilcoxon filter by (1) limiting the maximum 
distance between time indices used in the pair - 
wise averaging in each window to be less than 
some value I) , and (2) replacing the pairwise 
average with a more general averaging of M terms 
Even though M can theoretically take on any 
integer value M Ml and [) can take on any integer 
value 1 冬D 冬N it is quite obvious from the above 
observations that values greater than or equal 
to 2 should be used for M and D to get reasonable 
performance characteristics.

This modification will produce the limited­
degree extended-averaging Wilcoxon (LEW) 
filters with the filter output

]MW niedian L, E xm. , , m2,….' 上 \ m,
M i-l 1

max i ni, hi- i < 1) ^ . 5

where

\ 누 … ' nii , m2, ■ ■ ■. : k u & % n技 * > - - - -■■■■•

- - - 즈二 g Wi"「 " , 
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The parameters M and D will be called the order 
and the degree of the filter, respectively. As the 
value of I) becomes smaller, the LEW filter will 
be closer in performance to the median filter; 
on the other hand, as the values of D and M grow 
closer to N , the LEW filter will act more like a 
linear filter.

It is expected from the modifications 
above that the LEW filters have better overall 
performance characteristics than the original 
Wilcoxon filter. It is noteworthy that the per­
formance characteristics of the LEW filters can 
be controlled by a set of parameters (D, M) ; if 
more smoothing is needed, larger values of D and 
M can be used; if a strong nonlinear character­
istic is required because an original signal has 
many edges or narrow pulses, small values of 
D and M may be used.

If VM5 ( mt, mz, r% ： k n <m2 <■■■ 
n ! is used for the subscripts im, m. … niM > 

instead of the set of subscripts vM _ nio ... mM)

k nMm】苴 苴…冬 Z 诅(5), in which 
case we must have MWD, the computational 
burden will be reduced.

The LEW filter has the following properties 
of interest:

1. The LEW filter is a scale and translation 
invariant filter: that is, if we denote the 
output sequence ! '捉 I of an LEW filter for 
an input sequence | x>( as i yj = F( :i xj I) we 
have

F (a| X/ I +b| 1 }) =一F (I ax’ + b })

=aF (I * 1) -t b! 1L f'7'i

where | 1 ( is the sequence of constant 
value of 1, and a and b are any real con­

stants.
2. For a linearly increasing (or decreasing) 

input sequence, that is for 心 )丨1,个 

we have y； = j

3. If D =1 or M 느1 the LEW filter is the median 
filter.

4. If d = N and M =2 the LEW filter is the Wil­

coxon filter.
5. If D = M =N the LEW filter is almost the 

running mean filter. (If vH is used for the 
subscripts (m!, m2, mM) in (5), we would 

have exactly the running mean filter under 
the same condition.)

6. The LEW filter is a data-dependent L4ilter 
with at most M out of \ coefficients­
having nonzero values. These coefficients 
can take values only from the set

1 ?
1 °' M, M, 쁘宀 I

IV. A DUAL CLASS OF FILTERS

It is noteworthy that the filters we have 
considered in the previous section are non­

trivial subclasses of a more general class of filters 
whose filter transformation T, (X)can be express­
ed as

Ti (X) ^median! f (X) I 18s

where f is a vector linear operation mapping 
R" to FN, the median operator is a nonlinear 

function mapping Rp to R and X is the vector 
of N observations in a window of size N. For 

example, with f the averaging operation and P- 1 
we get the, running mean filters; with f the 
identity function, represents the median 

filters.
In particular, the LMH filter whose output is 

the median of means of disjoint subsets of the 
observations m a window can naturally be 
considered as a special case of this class, when 
the p components of f (X) are averages of con­
tiguous observations in disjoint subsets of X. It 
is clear that the choice of f in (8) which yields 
the Wilcoxon filter is
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f(X)5 쓰-？으,

Let us now consider a dual class of nonlinear 
filters which can be constructed by an inter­
change of the linear and nonlinear operations 
in (8); the resulting class of nonlinear filters is 
defined by the transformations

Ti (X) =mean I g (X) I (9) 

where g is generally a nonlinear vector function 
mapping RN to Rp- The P components of g|(X) may 
in many case of interest, be interpreted as each 
arising from some nonlinear transformation of a 
subset of the N observations. If g is the full 
median operation and P = 1 then Ti represents 
the median filters; if g is the identity function 
then T, represents the running mean filters. 
By choosing other functions or operations for g, 
more interesting filters such as the L-filters, the 
KNN filters and the SNN-mean filters can be 
derived from this general class of filters. It 
should also be noted that the nonlinear mean 
filters, which have recently been considered and 
analyzed in [ 21 ], are of this type.

A particularly interesting nonlinear filter 
class giving filters dual to the LEW filters is 
obtained with each of the P components of 
g(X； being median I Xmi, Xmi, ■ XmM I for P=H 
(N,M) or P=C (N,M) possible combinations of 
subscripts (mi. m2, ••• mM) in VMor VM) respectively

C (k, j) ― , - and H (k, j) is the number
(k- j)! j!

of combinations, allowing duplication, of j ele­
ments out of k possible elements; it is equal to 

represents 
symmetric 
the filter 
and VM in

C(k+j — l,j) . In this case T? (X) 
a class of L-filters with nonequal 
coefficients [22]. More explicity, 
transformation becomes, for M odd 
the definition of the filter.

t2 (X) 一으느브쓰一 當'"

CG I, 이成L，C(N- 

where X[i] is the i -th smallest component 
in X . This filter transformation becomes, for 
example,

卩(X) 6X[ 3]+9X[ 4]+6X[5] I, (11)

when N 드7 and M =5. It can also be shown that 
the filters with M 드21 and M=21 —1 are exactly 
the same for given window size N [22].

Note that the above two dual classes of 
filters are not disjoint. Any given filter may be 
considered to belong more naturally to one of 
these two classes.

V. ANALYSIS OF FILTER PERFORMANCE

In this section, the performance of the LEW 
filter will be considered for an ideal edge input 

and inputs with narrow pulses of various widths.

Performan ce for an Ideal Edge

An ideal edge may be defined as a noise- 
free step from a constant value to another 
constant value. Without loss of generality, we 
will assume here that the step is from 0 to 1. 
Let us consider an input with an ideal edge 
which can be represented by the sequence 
；...0 0 0 0 1 1 1 1 ... L It is quite straightfor­
ward to obtain the outputs of different LEW 
(M,D) filters for this input. Some results for 
window sizes N =5, N =7 and N =9 are given in 
Table 1(a) and (b). More generally, it can be 
proved [22] that the LEW(2,2) filters of any 
window size N ?葺 1 ? 3 preserve an ideal edge 
as does the median filter, while the Wilcoxon 
filter, which is the LEW(2,N) filter, does not 
preserve ideal edges.

In fact it is possible to obtain a general 
result on the ideal ed흥e performance of the 

LEW(2,D) filters for any window of size NW3 ； 
the result is that as I) increases for fixed N the 
extent of smearing of the ideal edge remains 
constant with two values only around the edge 
being smeared up to a certain value of l): beyond 
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this the edge begins to get smeared more, with 
more output values of 1/2 around the ideal 
ed흥e position. Although we do not provide 
analytic performance characterization of LEW 
filters with M >2, it can be expected that more 
smearing of edges will occur with increasing M , 
as seen in Table 1(b).

Performance for Narrow Pulses

For narrow pulses of heights 1 and various 
widths W >2. the outputs of several filters of 
window size N = 7 are given in Table 2. Table 2 

clearly shows that the LEW(2,2) and LEW(3,3) 
filters retain narrow pulses better than the me­
dian and Wilcoxon filters of the same window 
size 7, Table 2 also shows the tradeoff between 
narrow pulse retention and output pulse inte­
grity; in order to get reasonable narrow pulse 
retention characteristics, a small amount of 
smearing and loss of am기itudes is unavoidable.

If we consider a pulse of width W. = 1 (which 
is an impulsive noise component in practice), for 
which the input sequence is < ..0 0 1 0 0.. ；, the 
outputs of the above three filters will be exactly 
the same, the all-zero sequence ..0 0 0 0 0..; 
which implies good impulsive noise rejection 

properties of the filters.
Though the above observations have been 

made from results for a fixed window size, an 
analysis of the narrow-pulse retention charac­
teristics of the LEW(2,2) filter for any window 

of size N = 丄 1 启3 가lows that the LEW(2;2) 
filter retains pulses of width WWn「1 and it 
also retains pulses of width W - 1 with 
half the amplitude [22]. It should be noted that 
the median filter with the same window size 
will also retain pulses of width WWn ‘ 1, but 
will remove pulses of with \v <n .

It is also possible to explain the pulse res­
ponse of the Wilcoxon filters. For the Wilcoxon 
filter the response depends not on the pattern 
of the ones and zeroes for a binary input, but 
only on the numbers of ones and zeroes inside a 
window. Thus the ideal edge performance of 

the Wilcoxon filter can be used to obtain its 
ideal pulse performance. For example, when 
N〜7 and \V = 2, the Wilcoxon filter will not be 

able to retain this pulse because at any time 
there are at most two ones thus producing a 
zero as the output. From its edge performance 
we conclude that when N 드7 and W =3, the 
output of the Wilcoxon filter will be a smea호ed 

,1 1 1 1 1 , “
and reduced pulse > 匚〉s -今\ and for a j*， j, q, j, j
pulse of width \\ -.=4, the output of the Wilcoxon 
filter with window size 7 will again be a smeared 
」4 」1 ，】1 1 1 1 I—，and reduced pulse !二)，/ this is in

J， — f J， — r J，」
agreement with the results in Table 2.

Table 1. Outputs of LEW filters of different window 
sizes for an ideal edge input.

(a) M 厂 2

LEW (5, 2,2) Filter - -0 () 0 0 11 1 1 -

LEW(5, 2, 3) Filter* - - (.) 0 () 头봉 1 1 1 -

LEW (5. 2. 4 > Filter* - -0 0 ()专去1 1 1 -

LEW(5. 2, 5! Filter - - (} (.) () 늘늘 1 1 1 -

LEW (7, 2,2.) Filter - -0 0 0 0 1 1 1 1 -

LEW(7, 2, 3 ' Filter* • -（）0（）4-11 1 1 •

LEW (.7, 2, 4 i Filter* - -()()()去专 1 1 1 •

LEW(7. 2, 7 .i Filler* - -0 0 0 i i 1 1 1 -

I.EW (9, 2, 9 - Filter • • 0 0 4 i 1 1 '

(b)M 3

Table 2. Outputs of LEW filters for narrow pulse 
input.

W • 2 . N- 7

LEW 3, L 3 - Filter* - • U U () Xl 1 1 • •

LEW〔5, S, 4.) Filter* -- 0 () () 古윻 1 1 1 - -
LEW (5, L 5) F ilter - • 0 () 0 音* 1 1 1 , ■
LEW '7, S, 3； Kilter* .. 0 () 0 专읗 1 1 1 …
LEW <7, K 1) Kilter* -- 0 0 0 七윻1 1 1 …
LEW (7, > 5) Filter -- 0() 0 告웋 1 1 1 …
LEW (7, < 6) Filter - • 0 0 으을 1 1…
LEW (7,3, 7) Filter* •. （）0 ■卜专寻을 1 1 …

* : riirdiari ■ f an iiumlier of values is taken to be
halfawa、 bctwi t hi? t W Q m i dd) <■ values.

! Median I-'liter ■•()() U U 0 () 0 0 () 0 • •
I
LEW (2, 2) Kilter - • () () 0 0 () () 0 0 0 0 ■■
LEW >2, 7) Eiher , - () 0 () 0 0 0 0 0 (} 0 ■ ■
LEW (3, 3) Filter ■ ■ 0 0 0 0 0 0 0 0 • •
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(b)W = 3, N = 7
Input • • 0 0 0 0 1 1 1 0 0 0 0 ■ •

Median Filter ■,00000000000-- 

LEW (2, 2) Filter • ■ 0 0 0 0 去击七 0 0 O'- 0 ■ •

LEW (2, 7) Filter • • 0 0 0 会七去늘% 0 0 0 • •

LEW (3, 3) Filter •• 0 0 0 0 눌을会 0 0 0 0 …

(c)W==4, N = 7
Input
Median Filter

000011110000--
000011110000--

LEW (2, 2) Filter 0 0 0 0 1 1 1 1 0 0 0 0 ■ •

LEW (2, 7) Filter ■ • 0 0 0 七会七去击* 0 0 0 - ■

LEW (3, 3) Filter • • 0 0 0 ■읔읔을을吉 0 0 0 • •

VI. SUMMARY

In summary, a class of nonlinear filters has 
been introduced that has a basis in the class of 
rank estimates of statistical theory, exploiting 
the robustness of the estimates. Some useful 
filters that are effective for impulsive noise 
rejection, edge preservation and detail retention 
as well as Gaussian noise reduction have been 
considered. This class of filters also includes 
several common filters such as the mean, median 
and Wilcoxon filters as special cases. A discus­
sion of classes of general nonlinear filters and the 
interrelation of L-, M- and R-filters was given. 
Analyses of performances of the filters were 
investigated and compared in various situations.
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