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ABSTRACT

In order to overcome the disadvantages of linear filters in certain cases of practical interest, a class
of nonlinear filters (rank filters) are constructed based on a class of robust estimates, the rank estimates,
A subclass of these filters, the limited-degree extended-averaging Wilcoxon filters, is then described as an
interesting example of the rank filters with desirable characteristics. The properties of these filters are
discussed and the performance of these filters are anatyzed for ideal edges and narrow pulses.
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I. INTRODUCTION practical interest, For example, they smear out

edges and narrow pulses in the original signal,

Linear filters have been widely used for resulting in blurred edges in an image, and they

suppressing additive Gaussian noise in a stream
of noisy input data composed of desired signals
and nois¢ in many signai processing schemes.
The linear filters, however, give poor perform-
ance characteristics in certain situations of
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are also very poor in suppressing impulsive
(heavy-tailed) noise.

In order to overcome these disadvantages
of linear filters, nonlinear techniques have been
proposed and shown to be effective in such
situations [1-4]. Median filters, for example,
have strongly nonlinear characteristics, being
able to reject quite effectively impulsive noise
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components while preserving edges in the original
signal. Examples of applications of median filters
can also be found in nonlinear speech processing
and image processing [5,6]). Their deterministic
as well as statistical properties have also been
investigated in (7-9].. Efficient realizations for
real-time median filtering and VLSI implementa-
tions of median filters have been considered
quite recently in {10,11].

A median filter, however, does not in general
allow the user a sufficient degree of control over
its characteristics. Furthermore, median filters
do not have the averaging operation that is
particularly appropriate in reducing additive
Gaussian noise components in noisy data; thus
they may perform poorly in Gaussian noise,
Therefore, for a better overall performance
when the signal has both edges and details and
the noise has both Gaussian and impulsive com-
ponents, it is desirable to implement a filtering
scheme with an algorithm that has both non-
linear and linear (averaging) characteristics.

Among the typical examples developed for
this purpose are cascades of median and linear
filters, the order-statistic (OS) filters or the L-
filters §2,3], the M-filters (3], the K-nearest
neighbor (KNN) filters (12}, the symmetric
nearest neighbor (SNN) mean filters, the sym-
metric nearest neighbor median filters [13}
and the linear median hybrid (LMH) fiiters
(14].

It is noteworthy that the L- and M- filters
are based on classes of robust estimates [15,16],
the L- and M- estimates, respectively. Since these
two classes of robust estimates from statistical
theory have successfully been exploited in the
area of signal processing, it is quite natural to
seek similar applications of the third major
class of robust estimates, the rank estimates
(R-estimates) [17,18], of statistical theory. In
this paper a new class of nonlinear discrete-time
filters for edge-preservation, detail retention and
Gaussian and impulsive noise reduction is con-
sidered as an application of a class of rank-
estimates in signal restoration,

II. THE RANK FILTERS

Qur objective here is to define a new class
of filters based on R-estimates, for use in res-
toration of signals containing edges and fine
details, in addition to smoothly-varying portions,
which are observed in additive noise containing
impulses as well as Gaussian noise components,

One special form of finite impulse response
(FIR) linear filtering is obtained when the output
yx is the arithmetic average of N values in a
processing window of size N . The median filter
may be viewed as its more robust counterpart
which is quite effective in impulsive environ-
ments but which is not as good for additive
Gaussian noise smoothing. The concept of ro-
bustness is particularly appropriate in signal
processing when the noise has impuisive com-
ponents {or outliers), since robustness implies
insensitivity to a slight deviation (a small number
of impulses) from a nominal assumption (usually
of Gaussian noise). Such a robust scheme is also
effective for edge preservation since near the
start or the end of an edge the data in a window
appears to contain a few impulses.

The main motivation of our investigation in
this paper arises from the fact that there exist
other classes of robust estimates in statistics
which may function very well in our filtering
problems, We will concentrate our attention on
the class of R-estimates because this class of
robust estimates is the third main class after L-
and M-estimates. R-estimates were originally
derived from nonparametric hypothesis testing
theory (which gives us, amongst other possibi-
lities, rank tests for testing shifts or location
changes).

A peneral two-sample statistic for testing
location shift between two samples may be de-
fined as {15]

S

i1 moonc )

where v and - are the sizes of the two sumples.
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a (.} is a nondecreasing score function defined on
(0,1) with a(t)— a(l 1), 0~ t< land K, is the
rank of the i-th observation from the sample of
size m in the pooied sample of size m— . (That
is, R, is the number of observations less than
or equal to the i -th observation.)

If the locations of the two samples are the
same, the ranks of the observations from the
first sample {a sample of size m ) are equally
likely to be any set of m of the m-n integers
11,2, -.m*+ni. (Here a parameter g is called a
location parameter if the distribution has the
form ix- Q) for a mathematically specified distri-
bution f .) On the other hand, if the location of
the first sample is greater than }hat of the second
sample, the ranks of the observations from the
first sample will tend to have larger values.
resulting in a larger value for 5., , on the average,
Therefore by comparing S, , to a threshold that
can be set ¢ priori or varied adaptively (1o satisfy.
for example, a false-alarm probability criterion).
a test for location difference for the two samples
is obtained,

Since only one sample of size N\ is available
in each window in our problem of signal res-
toration, another set has to be defired from
each of the original samples of size N before
further processing in which such a rank statistic
is used. For this purpose mirror-imaging of the
sample in each window about a candidate loca-
tion value (estimate) may be employed.

Let ¥« be the candidate location estimate
for the sample of size X centered on the K-th
time index. We may center the original sample

(x.n. . Xxon) to become Ny » v - ox, .

v\ 7, and then take its mirror image v, «y .. -

Ve Xa.n! @s the second sample. Note that

v« will be the output of an R-filter of window
size N 2n- 1 at time index k , for a discrete-
[nte mput seguence The vutpus -« s titat
rank estinate that s calculated o catistv the

implicit equation

S 0 12
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[n essence, Equation (2) implies that an estimate
¥x of “r should be found so that the resulting
ranks of elements of each of the two samples
defined above, from the pooled sample, have
statistically similar values, In other words, if
¥x is an estimate of xx the centered and mirror-
imaged or reflected samples will be located at
the same point.

Note that sometimes it is impossible to
achieve an exact zero in Equation (2), because
of the discreteness of the expression Sun. In
this case we attempt to make S« . as close to
zero as possible, The discrete function a (.)
plays an important role in the R-filter, determ-
ining its characteristics. By choosing appropriate
forms for a(.}, a number of special R-filters
can be defined with characteristics different
from one f{ilter to another.

The essence of the operation of an R-
filter is that what affects the output of the R-
filter more is not the actual values of the data
but their relative ranks in each processing win-
dow at any time index. Thus very large values
such as produced by impulsive components will
have much less of an effect on the output than
they would have in linear filters that process
actual values of the data.

Iil. THE WILCOXON FILTER AND ITS
GENERALIZATIONS

In this section. our attention will be res-
tricted to a subclass of R-filters for which it
is possible to derive useful and practical pro-

perties and explicit structures,
The Wiicoxon Filter

Some particular scores are weli-known in
statistical theory for their useful properties.
Tor example, the normal scores function [[7}]
is w:t. ¢« with @ ' being the inverse ol
the standard normal distribution function. This
results in asymptotically optimum Gaussian
noise suppression. Another choice of interest,
for its simplicity, is a limiter-type score function;
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that is, aft) =1 for t>0.5,0 fort=0.5 and-1 for
t <0 _5with the ranks of identical values defined
to, be the averages of their ranks. This particular
choice leads to the median filter which is opti-
mum for smoothing of noise with a double-
exponential probability density function (pdf),
which is a very heavy-tailed pdf,

The linear score function, a (1) =1t 0.5, lies
between the above two score functions and
leads to the Wilcoxon filter [19]. In this case,
it can be shown [15,19] that (2) can explictly
be solved go give

Xp+ Xg

2

vy =median | for (p, q) €H {3}

which is the Hodges-Lehmann estimate [20]).
Here H=U=) (p,q):k—n=p, q=k+ni.If

V| {p, q):k—nEp=qsk+nlorV=1(p, q):k
nSp<qsk+ niis used for H in (3) the resulting
filter can be shown [15] to be asymptotically
equivalent to the filter using H=1} in (3). The
estimate (3) represents a data-dependent L-
filter with time-varying coefficients which are
determined by the data in each window, at
most two of which are nonzero. This is because
at any time index k. if we denote the i -th
order statistic as x[i], va

[e] +x[s]

will be 3 9 - for some r and s, where
rand s depend on the data in each window.
Note also that (3) represents a generalization of
median filters with an inherent averaging opera-
tion.
As has been shown in [19], (3) can be
transformed when =V to

K+t

2 signixe va)Rilxe wxl1= 0, 1
p-X-n

where K (|x, -vxl) is the rank of tx,~ val in the
seth Ixy - vai, i=k-n, - k.- kinl, Itisclear
from (4) that the Wilcoxon filter may also be

interpreted as a time-varying M-filter,

The Limited-Degree Extended-Averaging Wil-

coxon (LEW) Filter

Even though the Wilcoxon filter has both
linear (averaging) and nonlinear {median opera-
tion)} characteristics, the edge-preserving and
noise raduction properties of this filter are not
remarkable, One reason for this mediocre edge
performance of the Wilcoxon filter is that every
possible pair of values in each window is averag-
ed; for example, a value on one side of an edge
is averaged not only with a value on the same
side but also with one on the other side,
which results in smearing of the edge. A reason
for the relatively mediocre Gaussian noise reduc-
tion characteristic is that the output of each
window is an average of only two values, inde-
pendent of the actual size of the processing win-
dow.

The above considerations do offer some
ideas for improving the performance characteri-
stics of the Wilcoxon filter. In particular, it
would appear to be quite reasonable to modify
the Wilcoxon filter by (1) limiting the maximum
distance between time indices used in the pair -
wise averaging in each window to be less than
some value ) . and (2) replacing the pairwise
average with a more general averaging of M terms
Even though M can theoretically take on any
integer value M 21 and D can take on any integer
value 1=D =N jt is quite abvious from the above
observations that values greater than or equal
to 2 should be used forMand I} to get reasonable
performance characteristics.

This modification will produce the limited-
degree extended-averaging Wilcoxon (LEW)
filters with the filter output

N . e
v median! M > Xm, o g, my, My FE Vg,
=1
max:ime  ome S <y . 2 h
where
Vu 't ma, oo Migi ot h i Aan, S, e
Ly S r,
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The parameters M and D will be calied the order
and the degree of the filter, respectively. As the
value of [} becomes smaller, the LEW fitter will
be closer in performance to the medjan filter:
on the other hand, as the values of 1) and M grow
closer to N, the LEW filter will act more lLike a
linear filter.

It is expected from the modifications
above that the LEW filters have befter overali
performance characteristics than the original
Wilcoxon filter. It is noteworthy that the per-
formance characteristics of the LEW filters can
be controlled by a set of parameters ([}, M} ;if
more smoothing is needed, larger values of D and
M can be used; if a strong nomnlinear character-
istic is required because an original signal has
many edges or narrow pulses, small values of
D and M may be used.

H Va=lim, me o mydth 0Sm, <m, <
<my =k~ niis used for the subscripts ipy, m, ... My ¢
instead of the set of subscripts \'y - m, m,. - my 1

k' nEm =m, S SmwSk - nlin (5), in which
case we must have M =D. the computational
bhurden will be reduced.

The LEW filter has the following properties
of interest:

1. The LEW filter is a scale and translation
invariant f{ilter: that is, if we denote the
output sequence {y:{ of an LEW filter for
an input sequence | x| as lv.i=F{ix 1) we
have

Flalx,1+bl 1})=F (lax,+b})
=aF (x|t bl {7

where | 1| is the sequence of constant
value of 1, and 2 and b are any real con-
stants.

2. For a lineariy increasing {(or decreasing!

input sequence, that is for x,- y 1 1 ..
we have v,~|

3. If D=1 orM =] the LEW f{ilter is the median
filter.

4, If D-=N and M =2 the LEW filter is the Wil-

17

coxon filter.

5. If D-M~=N the LEW filter is almost the
running mean fiiter. (If +, is used for the
subscripts imy, mq, .. my)  in (3), we would
'havé exactly the running mean filter under
the same condition.)

6. The LEW filter is a data-dependent L-filter
with at most M out of N coefficients-
having nonzero values, These coefficients
can take values only from the set

IV. A DUAL CLASS OF FILTERS

It is noteworthy that the filters we have
considered in the previous section are non-

trivial subclasses of a more general class of filters
whose filter transformation I, (Xican be express-
ed as

T X)) = mediand 1 (X0} 8

where { is a vector linear operation mapping
R” to R°_ the median operator is a nonlinear
function mapping R to R and X isthe vector
of N observations in a window of size N, For

example, with [ the averaging operation and P =1
we get the running mean filters; with { the
identity function, T, represents the median
filters.

In particular, the LMH filter whose output is
the median of means of disjoint subsets of the
observations mn a window can naturally be
congidered as a special case of this class, when
the p components of f({X) are averages of con-
tiguous observations in digjoint subsets of X. It
is clear that the choice of [ in (8) which yields
the Wilcoxon filter is
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X[ +&_

;(X)m}——nz— . I<<NY,

Let us now consider a dual class of nonlinear
fitters which can be constructed by an inter-
change of the linear and nonlinear operations
in (8); the resulting class of nounlinear filters is
defined by the transformations

Ts (X) =meani g (X) | (9

where g is generally a nonlinear vector function
mapping R" to R, The P components of gl(X) may
in many case of interest, be interpreted as sach
arising from some nonlinear transformation of a
subset of the N observations. If € is the full
median operation and P=1 then T: represents
the median filters; if g is the identity function
then T, represenis the running mean filters,
By choosing other functions or operations forg,
more interesting filters such as the L-filters, the
KNN filters and the SNN-mean filters can be
derived from this general class of filters. It
should also be noted that the nonlinear mean
filters, which have recently been considered and
analyzed in [21], are of this type.

A particularly interesting nonlinear filter
class giving filters dual to the LEW filters is
obtained with each of the P components of
g(Xs being median | Xz, Xmi, ", Xm, | for P=H
(N,M) or P=C (N,M) possible combinations of
subscripts (m;.ng_ - my) in Vyor V', respectively

C (k,j)=-(k__—'j)m— and H (k, j) is the number
of combinations, allowing duplication, of | ele-
ments out of k possible elements; it is equal to
Ctk+j—1,j) . In this case T.(X)
a class of L-filters with nonequal symmetric

represents

coefficients [22]. More explicity, the filter
transformation becomes, for M odd and \ﬁf, in
the definition of the filter,

, N—M)IM! v
P () =g R

vl

M;__l_ S COUN- i, M_? .1__..ﬁ )\'L \]. A

Ch- 1. 5 5

. where X[i] is the i-th smaliest component

in X . This filter transformation becomes, for
exampie,

T, (X)=2—Ill6X[3]-4-9}([4]-+-6K{5] i, {1

when N =7 and M =5, It can also be shown that
the filters with M =21 and M=21-] are exactly
the same for given window size N [221].

Note that the above two dual classes of
filters are not disjoint. Any given filter may be
considered to belong more naturally to one of
these two classes.

V. ANALYSIS OF FILTER PERFORMANCE

In this section, the performance of the LEW
filter will be considered for an ideal edge input
and inputs with narrow puises of various widths.

Performance for an Ideal Edge

An ideal edge may be defined as a noise-
free step from a constant value to another
constant value. Without loss of generality, we
will assume here that the step is from O to 1.
Let us consider an input with an ideal edge
which can be represented by the sequence
'L,L0000 11 11 ... Ttis quite straightfor-
ward to obtain the outputs of different LEW
(M,D} filters for this input. Some results for
window sizes N =5, N=7 and N =9 are given in
Table 1(a) and (b). More generally, it can be
proved (22| that the LEW(2,2) filters of any
window size N 2n 173 preserve an ideal edge
as does the median filter, while the Wilcoxon
filter, which is the LEW(2N) filter. does not
preserve ideal edges.

In fact it is possible to obtain a general
result on the jdeal edge performance of the
LEW(2,D) filters for any window of size Nz
the result is that as [ increases for fixed N the
extent of smearing of the ideal edge remains
constant with two values only around the edge
heing smeared up to a cerfain vatue of !1; beyond
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this the edge begins to get smeared more, with
more output values of 1/2 around the ideal
edge position. Although we do not provide
analytic performance characterization of LEW
filters with M >2, it can be expected that more
smearing of edges will occur with increasing A,
as seen in Table 1{b).

Performance for Narrow Pulses

For narrow pulses of heights 1 and various
widths W >2 the outputs of several filters of
window size N=7 are given in Table 2, Table 2

clearly shows that the LEW(2,2) and LEW(3,3)
filters retain nasrow pulses better than the me-
dian and Wilcoxon filters of the same window
size 7. Table 2 also shows the tradeoff between
narrow pulse retention and output pulse inte-
grity; in order to get reasonable narrow pulse
retention characteristics, a small amount of
smearing and loss of amplitudes is unavoidable.

If we consider a pulse of width W.=1 (which
is an impulsive noise component in practice), for
which the input sequence is ; ..0 0 1 0 0.. |, the
outputs of the above three filters will be exactly
the same, the all-zero sequence . .0 0000,
which implies good impulsive noise rejection
properties of the filters.

Though the above observations have been
made from resuits for a fixed window size, an
analysis of the narrow-pulse retention charac-
teristics of the LEW(2,2) filter for any window
of siz¢ N~25 i 1 =3 shows that the LEW(2.2)
filter retains pulses of width W=2n-1 and it
also retains pulses of width Wan 1 with
half the amplitude [22]. It should be noted that
the median filter with the same window size
will also retain pulses of width W=2nr © 1, but
will remove pulses of with W <n .

It is also possible to explain the pulse res
ponse of the Wilcoxon filters, For the Wilcoxon
filter the response depends not on the pattern
of the ones and zeroes for a binary input, but
only on the numbers of ones and zeroes inside a
window. Thus the ideal edge performance of

9

the Wilcoxon filter can be used to obtain its
ideal pulse performance. For example, when
N-=7and W=2, the Wilcoxon filter will not be
able to retain this pulse because at any time
there are at most two ones thus producing a
zero as the output. From its edge performance
we conclude that when N =7 and W =3, the
output of the Wilcoxon filter will be a smeared
and reduced pulse ! 3 ‘21' P 71,1 and for a
pulse of width w.=4, tt'le c.)u~tl.:au-t‘o? the Wilcoxon

filter with window size ‘f; w}l[ again be a smeared

[ . .
Y D S

and reduced pulse 9 5
agreement with the results in Table 2.

5, - thisisin

Table 1. Outputs of LEW filters of different window
sizes for an ideal edge input.

tayM = 2

LEW 5, 2,21 Filter - 1

LEW(5,2,3) Filter* -0 004311

LEWS, 2,40 Filter*- 0003411

LEW (5,25 Filer -c0 00 %311
1
!
i

Guonl1l

LEW{7.2.21 Filtce --0000 11
LEW((7.2.31 Filter*- 0 0 0441
LEW (7,2.4: Fier*- 0000 4% 1
LEW7. 27 Fier®* -0 00 +411
LEW1Y, 2,95 Filter -0 0¥+ 441
tbiIM 3

TLEW 5.3 3 Fillee* -0 044111
LEW IS, 3, 40 Filter* - 000 %%1 11
LEWS, 3,5 Filter ~-0b 044111
LEW 7.3, 3 Flier* .- 00044111
LEWIT 3 1 Filter* 000441113
LEW17.3,5 Filler --0004%%111
LEW 7.3, 6/ Filter ~-004+4%11
LEW(7,3.7) Filter* - 00 44%%1 1
®imedian b wooccon pumber of values is taken 1o be

tialfawar between the twin muddie values,

Table 2. OQutputs of LEW filters for narrow pulse
input.

Al - 2 N-- 7

;,._i.{.l_w S T
OO BEODOU0-
TLEW 2, 2)Filter -0 000000000 -
FPEW 2 7iFiher - 0000000000
LEW3,3) Filter --00 004540000~

: Medan Falier
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M W=3 N=7
1nput Q0001110000
Median Filter «~g000000000C--

LEW(2,2) Filter --00 0044400 0.0--
LEW (2,7) Filter --00044+++4000--
LEW(3,3) Fiter --0000+%30000--
{c)W=-4, N=7

Input 000011120060 0--
Median Filter  --000011110000--
LEW(2,2) Filter --0000811110000--
LEW(2,7) Filer --00 0 44+4+4+44000--
|[LEW@3.3) Filter -0 00454434000~

V1. SUMMARY

In summary, a class of nonlinear filters has
been introduced that has a basis in the class of
rank estimates of statistical theory, exploiting
the robustness of the estimates. Some useful
filters that ate effective for impulsive noise
rejection, edge preservation and detai! retention
as well as Gaussian noise¢ reduction have been
considered. This class of filters also includes
several common filters such as the mean, median
and Wilcoxon filters as special cases. A discus-
sion of classes of general nonlinear filters and the
interrslation of L-, M- and R-filters was given,
Analyses of performances of the filters were
investigated and compared in various situations.
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