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An Adaptive Beamforming Algorithm for the
LLMS Array Problem
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Abstract

An adaptive nulling technique is presented to synthetically overcome the integrated problems
associated with the conventional LMS array in the performances of jammer rejection, convergence
rate, misadjustment, and reference signal generation. The proposed method is to remove the target
signal from the array input and to eliminate the reference signal prior to minimization processing.
The algorithm is constrained to the residue noise level in adaptive processor. Analysis shows
effectiveness of the algorithm for coherent and/or incoherent interference rejection, wide dynamic
range of convergence factor, rapid adaptation rate, and small mean square error. Simulation results

confirm the theoretical prediction.

I Introduction deliberate or unintentinal interferences are smart

. . . and strong. The adaptive null steering array has
Conventional sngnal. ref:ept.xon syste.ms ax.-e been a useful means for reducing the vulnerability
susceptable to degrac.iatlc‘)n n smr'lal-to-nmse ratio of the reception of a desired signal in the presence
(SNR) performance in signal environments where of interferences in radar, sonar, seismic, and
— communications systems. The Applebaum’s

FEGR, BB adaptive array [1] and the least-mean-square
(Agency for Defence Development) (LMS) array of Widrow [2] have been most widely
BSHFE 1988 58 24A used for the suppression of interference in
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adaptive communications applications. Most
adaptive arrays based on conventional optimiz-
ation techniques assume that the desired signal is
statistically uncorrelated with the interference
signal and that the strength of the desired signal
is weak compared to the interference.  These
basic two assumptions limit the performance of

,thaadaptim,aztayjnpragticauimaﬁonmmth

coherent interferences exist at the receiving array
and where the target signal power is strong
compared to the interference as in usual
communications systems.

There have been several significant problems
to be considered in the conventional adaptive
algorithms: inability of rejecting coherent
interference [3]-[5), difficulty of generating a
reference signal for the LMS array [6]-[8], the
power inversion problem of the desired signal in
the Applebaum type array (8], and slow con-
vergence speed [9]. Any of these problems
encountered in the adaptive nulling applications
can cause a considerable degradation of the
array performance. Most of these adaptive
processors have been studied for the environment
of individual problem, without considering the
integrated problems mentioned above. Synthetic
approach for these problems is thus considered
here.

The purpose of this paper is to investigate the
effect of the new adaptive array in the perfor-
mance of synthetically overcoming the problems
associated with the conventional LMS adaptive
algorithm. The new array is basically a modified
version of the LMS adaptive array. The arch-

itecture of the approach is to decorrelate
target signal from the array input signal by means
of prefiltering and to eliminate the reference
signal during optimization processing. It will be
shown that the new array have several advantages
against the problems of the LMS algorithm: 1)
reference signal is not required, 2) coherent
andfor incoherent jammers are rejected, 3)
dynamic range of convergence factor is wider and
is independent of the level of the desired target
signal power, 4) rapid convergence and small
mean-square error (MSE) are achieved, 5) the
strength of the desired target signal does not
affect on the array output, i.e., no power inversion
for the target signal occurs.

In section II the problems of the LMS
algorithm are examined. In section III the

proposed algorithm is derived and some con-
straints of the proposed method are described.
In section IV the performances are compared.
In section V computer simulation results are
presented to verify the theoretical predictions.
Section VI contains conclusions.

Adaptive Algorithm

The LMS algorithm of Widrow [2] finds the
weight vector by minimizing the output mean-
square error (MSE) between the array output
and the locally generated reference signal. It is
noted that the algorithm performances are closely
dependent on the coherence of the input
correlation matrix of each signal component, the
estimated reference signal in the cross-correlation
matrix, and the total input signal power of each
signal. The basic requirements of the LMS
algoirthm are: 1) estimated reference signal must
be generated at each iteration, 2) the reference is
statistically highly correlated with the target
signal, 3) the desired target signal is not correlated
with any of the interference signals, 4) the con-
vergence factor must be chosen so that the mean
value of the weight vector converges to the Wiener
solution. If even one of these conditions is not
met, the LMS algorithm can not be used in the
desired manner. In practice the reference signal is
not always available at the receiving array, the
coherent jammers often exist with the target
signal, and the input signal is rapidly changing.
The problems associated with the LMS algorithm
are considered next.

1. Coherent Signal Problem

The problem of this correlation exists due to
the inherent property of the LMS algorithm. If
the estimated reference signal is not correlated
with the desired target signal, the cross-correlation
vector becomes zero, causing a singular weight
vector problem, If the jammer signal is highly
correlated with the desired target signal, the
correlation vector contains the coherent jammer
signal components as well as the desired signal
component. Thus, the adaptive processor
even utilizing the estimated reference signal
which is highly correlated with the target signal
can not distinguish these two signal classes. This
can cause an incorrect weight vector which cancels
all or a portion of the desired target signal at the
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array output. This signal cancellation phenomena
was previously examined by Widrow et al. [3],
and some methods to combat these effects have
been suggested. Duvall’s [3] method uses the
Frost [10] beamformer to separate the desired
target signal from the interference signal. Spatial
smoothing method was suggested by Shan and
Kailath [4] to overcome the correlation between
the jammer and the target signal, but this method
requires a considerable amount of computation.
Su [5] uses the so-called parallel spatial processing
method to combat the coherent interference.
This method requires a number of sub-beamformer
for the desired performance. This vulnerability
for the coherent jammer mainly comes from the
interaction between the signal and the interference
in the weighi adjustment control loop.

2. Reference Signal Problem

The performance of the LMS array output is
largely dependent on the quality of the generated
reference signal. Ideally, the reference signal is
required to be the desired target signal itself in
order to give the maximum correlation. If the
locally generated reference signal is not highly
correlated with the desired signal, almost no
array output is reproduced. Furthermore, in the
changing environment where the desired target
signal is often changing depending on the mission,
a number of set of the reference signals must be
generated and switched effectively. In practical
situations the reference signal is not always
available at the receiver and is not feasible for the
receiving array to generate an exact replica of the
desired signal for maximum correlation. Suitable
reference signal generation methods have been
suggested for a few types of communication
system [6-7). However, these techniques do not
give a general solution for all applications. The
power-inversion adaptive array was suggested by
Compton, Jr. [8] to eliminate the reference signal,
but this is useful only when the strong signal is
non-coherent interference. Otherwise, the output
signal-tojammer noise ratio (SINR) is degraded
as the input SINR increases.

3. Convergence Range and Speed Problem

The convergence rate of the adaptive algorithm
is an important factor in real situations where the
input signal is rapidly changing. It is shown that
the convergence speed is dependent on the eigenv-
alue spread of the input correlation matrix and
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that the convergence range is strictly limited by
the total signal power. It is observed that when
the total input signal is much strong compared
to the interference signal, the resultant range of
convergence is narrower, so the system becomes
more unstable. This phenomena can be a more
serious when the number of jammers increase
and the number of array is large. In cases where
the convergence time is much longer than the
radar dwell time or the hopping time of the
spread-spectrum signal, the algorithm can not
adapt to the rapidly changing input signal. One
way to increase the convergence speed of the LMS
algorithm has been discussed by Narayan et al. [9]
in the transform domain. This method prewhites
the input signal in order to compress the
eigenvalue spread, but needs an additional time
for the discrete Fourier transform.

From these points of view, it is concluded that
the key factor governing the problems is the
manipulation of the input correlation matrix of
each signal prior to adaptation processing: 1)
reduction of the total amount of input power
entering the adaptive processor, 2) decorrelation
of the target signal from the interference signal,
3) replacement of reference signal by the thermal
noise level constant vector. This can be achieved
by prefiltering the array input signal in frequency
or spatial domain prior to adaptation processing.
This is considered next.

II. Proposed Adaptive Algorithm

In a practical adaptive system, the desired
reference signal is not always available, smart
coherent jammers and interferences often exist
at the receiving array, and the input signal may
be rapidly changing. In these situations, the
conventional adaptive array may not perform in
the desired manner. In this section a modified
LMS algorithm with a residual noise constraint
is presented to overcome the integrated problems
associated with the conventional LMS adaptive
algorithm.,

1. Algorithm Derivation

A new model shown in Fig. 1 consists of the
adaptive processor and the nonadaptive combiner.
The adaptive processor is used for the weight
vector generation to null the unwanted signals,
while the nonadaptive combiner sums the
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Fig.1. Proposed adaptive model.

weighted input signal utilizing the copied version
of the weight vector from the adaptive processor.
A new adaptive processor is basically a modified
LMS combiner having a bank of notch filters
(frequency or spatial) which can decorrelate the
target signal components from the array input.
Note that the reference signal has been eliminated
and replaced by infinitesimal constant vector
which may be neglected in the feedback loop. The
element of this constant signal vector should be a
small value equivalent to or less than the thermal
noise level, In this case, the error signal e(k)
with time index k can be approximated by array
output itself in the adaptive processor. To avoid
a loss of generality, however, by taking into

account the noise-level constant vector, the
error signal is
e(k)=c(k)-n(k) (Y]

where c(k) is a vector whose element is a small
constant value of q and n(k) is the noise output
of adaptive processor, i.e.,

ck)=q[11...1] 2)

n (k)= W' (k) U (k) 3
where W(k) is the adaptive weight vector at time
k and U(k) is the input signal vector containing
only prefiltered jamming signal and interfering
noise. Assuming W(k) and U(k) are statistically
independent, the mean-square error (MSE) is
given by

BT IBERGE
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MSE = q2 + WI(k) G (k) W (k) - 2QT (k) W (k)
)

where G denotes the input interference correlation
matrix represented as

G =E[U (k) UT (k)]

Ui . U Uy® |

=E | U, (k) Uy (k) . U, (k) Uy (k)

Uy () Uy (k). ug (0

&)

and Q is the noise cross-correlation vector repre-
sented as

Q = E{c(k) U (k)] (6)

where E[-] is the expectation. Using (2), (6)

can be reduced by

Q=qgN )
where N = E{U(k)], the average input noise vector
entering the adaptive processor. After taking e(k)
itself as an estimate of the MSE in the adaptive
processor, it can be shown that the estimated
gradient vector of the MSE is

V&k)=2nk)U(Kk)-F (k) (8)
where F(k) = 2 ¢(k)U(k). Using the method of
steepest descent and the estimate of the gradient
in (8), the new weight updating equation is given
by

W(k+1)=Wk)-2unk) Uk)+uF (k) (9)

where u is a convergence factor which determines
the step size and stability, W(k) is an old weight
vector estimated at time k, W(k-i-l) is a new
weight vector at time k+1. Note that this weight
equation contains the additional term of F(k)
which is the input interference signal vector scaled
by a nonzero constant vector containing a noise
level component.

Under the condition that the convergence
factor is chosen such that

0<p<1/gp,y (10)



BiEE

where Bmax is the largest eigenvalue of G, it can
be shown that the mean value of weight vector
converges to the optimal weight vector:

s
Wop =610 (11)

For the noise-level constant vector, it can be
rewritten by

wopt=qc;‘l N (12)
The minimum MSE is now obtained by sustituting
wopt from (12) for W in (4):
=2 T
MSE in=9" -aN" W, 13)

For the special case that the input jamming and
interfering noise signal is practically much stronger
that the system thermal noise, the constant noise
vector C(k) may be neglected in the weight adjust-
ment control loop. In this case, the new weight
updating equation from (9) is approximated by

W (k+1) = W(k) - 2 & n(k) U(k) (14)

We call (9) the modified LMS algorithm with a
residue noise constraint, while for the special
case (14) is defined as the zero-mean-square
(ZMS) algorithm in a practical system.

It is compared that the LMS algorithm always
requires the estimated reference signal and that
the amount of the minimum MSE mainly depends
on the average power of the reference signal,
while the proposed algorithm does not need
reference signal generation and the amount of
the minimum MSE is always less than the residual
thermal noise level. For the ZMS case, the
theoretical minimum MSE becomes zero. But in
practical adaptive system with a finite adaptation
time the minimum MSE can not become zero.
It will be highly dependent on the residual noise
level,

Fig. 2. shows the weight adjustment control
loop for the ZMS algorithm, Note that the
correlator receives only the interference and the
jamming signal from the array input and output.
For a practical use of adaptive algorithm, the finite
time solution to weight vector is more important.
Frqm (14), the average weight vector at adaptation
time k is found to be:

E [W(k)] = M[I - 2uD]¥ M"! W (0) (15)

An Adaptive Beamforming Algorithm for the LMS Array Problem 127

where W(0) is the initial weight vector, M is the
modal matrix of G, and D is the diagonal eigen-
value matrix of G. As the iterative adaptation is
progressed, the average weight vector get smaller as
the iterative time increases and approaches
residual noise level of the adaptive processor.
For the worst case where the constant noise
vector is eliminated, the average vector at adapt-
ation time of infinity becomes zero. This
theoretical zero vector causes a cancellation of
the jamming and the interfering noise signals as
well as the desired target signal. To avoid this
theoretical singular solution problem, this
algorithm is constrained to the residual noise
level and to the adaptation time of convergence.
In practice the adaptation time is not allowed to
reach infinity, so this theoretical worst case may
be of little concern. This is considered next.

X = Xet X+ Xy
o H w
—]NOTC I

—= N
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U= X+ X N =W [X+ X]

Fig.2. The ZMS algorithm control loop.

2. On the Constraints

Consider the rate of decrease of each signal
component during adaptation processing to
minimize the unwanted signals. The negative
gradient for each signal can be expressed as

dP; /dk >  dP, /dk (15.a)
dP; /dk >  dP /dk (15.b)
dPg /dk == dP, /dk (15.0)

where de/dk, dPS/dk, and dPt/dk are the negative
direction of gradients for the jammer, target
signal, and thermal noise power, with respect to
the small change of adaptation time, dk, respec-
tively. Fig. 3 shows the gradient change for the
jammer rejection. The jammer’s power rapidly
decreases with the gradient of de/dk as compared

(1267)
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where R is the composite input signal correlation
matrix of the nonadaptive combiner. Thus, by
properly choosing the noise-level constant vector
¢(k), the adaptation time can be adjusted, and the

] Threshold Time
Gain i ;
Py .
SINR "No
Improvement | Improvement
i = .
Fig.3. The gradient change for the jammer

rejection in the ZMS algorithm.

to the other signal components. After a sufficient
time of convergence has been elapsed so that the
level of the jammer power at the processor output
is equivalent to or less than that of the thermal
noise power, the actual performance of the SJNR
ratio is not improved further because the thermal
noise power constantly exists with the small
gradient of dP/t/dk. This point is defined as the
“threshold time of convergence”, k*, for
maximum SJNR. This is the time when the
level of the output jammer power is equivalent
to the level of the thermal noise power. Thus,
the adaptation time in the ZMS algorithm is
constrained to the threshold time in order to
avoid the theoretical singular problem. In this
case, the constraints are subject to the residual
thermal noise level of the adaptive system.
At the threshold time of convergence, the output
noise power at the adaptive processor is given by

P, (k*)= WT (k*) G (K*) W (k*) = P, (k*)
amn

where Py, is the output noise power of the adaptive
processor. Using (17), the relationship between
k* and the suppressed noise power level is given by

P, (k*)=WT(0) M AK* D AK* M W(0)
(18)

where A= [I - 2uD]. Since A is the diagonal
matrix whose elements are small values less than 1,
A converges thermal noise level as time goes to
infinity. Thus, the threshold time of convergence
is controlled by the level of the thermal noise.
The lower the noise level, the longer the
adaptation time is required, but the output is less
noise. Thus, the output SINR is maximized at the
threshold time of convergence where Pj = Pt:

output SINR can be maximized.

In addition, the more accurate desired target
signal from the adaptive system can be reproduced
by subtracting the residual noise output n(k) of
the adaptive processor from the nonadaptive
combiner output y(k) each time. Because the
residual noise output always works as an error
difference between the desired noise level and the
residual noise level at each time of adaptation.
This suboptimal weight vector copied from the
adaptive processor rapidly suppresses the
undesired interference signal down to the level of
the thermal noise, while it enhances the desired
target signal to achieve the maximum SJINR.

IV. Performance Comparison

The convergence range of the algorithm is
bounded by the largest eigenvalue of the input
correlation matrix. It can be shown that

<tr[G] (20)

gmax

Bmin >det[ G ] @2n
where tr [G] and det [ G] denote the trace and
the determinant of N by N square matrix G,
respectively. Using (10) and (20), the convergence
range of the ZMS algorithm is bounded by the
total interference power Pj and the thermal noise
power Pt’ ie.,

0 <“ZMS < 1/[1>j +P,] 22)

where Pj =§; E[Ui2 (k)] and P, = 02 N, while the
convergencg range of the LMS algorithm is
governed by the sum of the array input signal
component, i.e.,

0 <uLMS < /[P + Pj +P,] 23)

N
where PS='}31 E[X:i(k)] = total target signal
l=

(1268)
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power. Note that the dynamic range of con-
vergence factor in the ZMS algorithm is
independent of the target signal power. Com-
paring (22) and (23), the dynamic range of the
ZMS algorithm is always wider by a factor of the
target signal power than that of the LMS
algorithm. If the target signal power is much
stronger than the interference signal power, the
convergence factor in the LMS case must be
chosen as small as possible because the large
convergence factor around limit can cause the
adaptive system to be unstable. Accordingly,
small convergence factor causes long adaptation
time. For this reason, the LMS algorithm is not
effective when the receiver input signal-to-jammer
ratio (SJR) is high. Since the convergence factor
of the ZMS algorithm is not dependent on the
target signal power and can be chosen from a wide
range, the ZMS adaptive array can be more stable,
faster, flexable, and have less output error.

Under the equal convergence factor, the con-
vergence speed is dependent on the ratio of the
maximum to minimum eigenvalue of the correl-
ation matrix {9]. Using (21), the ratio gmax/g
in the ZMS algorithm can be expressed as

min

r(G) =tr [G]/det[G]. 24)
For the LMS algorithm the ratio is given by
r(R) = 1/a. (tr (Rs)/det (G) +r (G)] (25)

where Rs is the target signal correlation matrix and
a =1 + det (R)/det (G). When a is around 1, the
eigenvalue spread of the LMS algorithm is always
greater than that of the ZMS algorithm. Thus,
the convergence speed of the LMS case is always
slower than the ZMS case. When the target
signal power is much stronger than the jammer
power, the convergence speed of the LMS case
will be much slower. When the jammer power is
much stronger, the difference of the convergence
speed becomes small,

As a measure of the degree by which the MSE
exceeds the minimum MSE, misadjustment is
defined by Widrow {21], i.e.,

M = excess MSE/MSEmm (26)
It can be shown that for the ZMS algorithm

M=p [P +P] (27)

(1269)
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and for the LMS algorithm

M=“[Ps+Pj+Pt] (28)

Note that under equal input signal environments
the misadjustment of the LMS algorithm is always
higher than that of the ZMS algorithm. This means
that an actual mean-square error of the ZMS
case is always small, so the output jammer power
decreases more rapidly. Therefore, at the finite
equal adaptation time the output SJR of the ZMS
case is always higher than that of the LMS case.

It is known that the signal cancellation problem
occurs when the interference signal is correlated
with the desired target signal. This phenomena
occurs even if the interference signal just resides
in the same signal space [3]. The correlator of
the ZMS array receives the prefiltered interference
signal components from. the array input and
output prior to adaptation processing. As long as
the input filter can remove most of target signal
components, the signal cancellation problem can
be eliminated in the ZMS algorithm.

One advantage of the ZMS algorithm is the
elimination of the requirement of reference
signal generation in the weight adjustment
control loop. Thus, the array performance is no
longer influenced by the estimated reference
signal and does not require even the desired
signal information in the spatially notched ZMS
array [11]. In terms of the computational
efficiency and circuit complexity, the ZMS
algorithm can be implemented easily, as far as
the reference signal
concerned.

One disadvantage of the ZMS algorithm is the
signal separation problem in the practical notch
filtering. Signal leakage out of the notch filter
can cause cancellation of the desired signal during
adaptation processing. In the worst-case situation
where the stochastic property of the interference
is exactly the same as the target signal (i.e., same
frequency), signal separation is not achieved by
frequency-domain filtering method. For this
case, one can consider spatial notch filtering using
Duvall’s [3] presubtractor based on the array
structure. For other cases, frequency domain
notch filtering can be realized using transversal
filter. For a more protection, a combination of
the spatial and the frequency domain filtering is
desirable [12].

The ZMS adaptive null steering array minimizes

generation problem s
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the undesired signals by creating nulls for the
interference signals in the off-look direction
using the weight vector generated by the ZMS
algorithm and maximizes the desired signal in the
steered main beam direction. The ZMS adaptive
array can be implemented in two ways depending
on the type of input notch filter to remove the
target signal from the array input during minimiz-

X2 Uz

ZMs

X m Weight

Adjustment

—Controd———

ation processing. The spatially notch filtered
ZMS array (SP-ZMS) is shown in Figure 4. It
employs the spatial subtractor between the
adjacent array signal. The frequency notch
filtered ZMS array (FIR-ZMS) is shown in Fig.5.
It employs the transversal finite-impulse-response
(FIR) filter (FIR-ZMS). Details on the two types
of ZMS arrays are presented in [12].

V. Simulation Result and Discussion

Computer simulation results are presented to
verify the effectiveness of the theoretical analysis
of the proposed ZMS algorithm in comparison
with the conventional LMS algorithm in the
adaptive nulling applications. Several assump-
tions were made in this simulation including: the
input signals are narrowband and the target
signal’s direction is known, but all interference’s
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Fig.5. FIR-ZMS array.

direction and spectral information are unknown.
The arrays are linea, and all elements are
isotropic and noninteracting. The performances of
the ZMS algorithm were compared with that of
the LMS array in terms of the jammer rejection
capability in the incoherent and/or coherent
directional jammers, the speed of null progress,
the mean-square errors, the sensitivity to the
signal leakage, and the array output performance.

Fig.6 compares the null gain progression for
the LMS and ZMS algorithms, measured in the
direction of the incoherent jammer arriving at -
30 degrees from broadside. A 7-array element was
used with an interelement spacing of half a
wavelength at the target signal frequency of 0.2

Gain (d8)

Adaptation Time

Fig.6. Adaptive null progress for the incoherent
jammer No.1.
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in normalized scale. The spatial angle of
incidence from broadside for target signal was
set to 30 degrees, and the incident angles for the
jammer No. 1 and No. 2 were assumed to be-30
degrees and 70 degrees, respectively. The
frequencies of jammer No.l and No.2 were set to
0.4 and 0.13, respectively. The input SJR was -6
dB. It is observed that under the equal con-
vergence factor of 0.025 both of the ZMS arrays
show much faster, deeper null progress to the
steady-state gain with small fluctuations in the
direction of jammer. But the LMS array shows a
slow null progress, large fluctuation of null gain
at the same adaptation time. As the theory
indicates, depending on the amount of total
input signal power entering the adaptive processor,
the rate of adaptation varies. The less the total
input signal power, the faster the speed of null
progress.

Fig.7. compares the null gain progression for
coherent jammer No.l under the two types of
adaptive arrays. For the worst case consideration,
the frequency of the jammer No.l was set equal
to the target signal’s frequency for a maximum
correlation with the target signal. The frequency
of the jammer No.2 is very close to the target
signal’s frequency for high correlation. These
curves show clear differences in their coherent
jammer rejection capabilities,. The ZMS arrays
continue to decrease, rejecting even a coherent
jammer and rapidly approaches the steady-state
null gain. The LMS array does not show the
capability of rejecting a coherent jammer. Fig.8
compares the adaptive null directivity for the
coherent jammer. Fig.9 shows the output mean-
square errors under an equal convergence factor

N
\y
. '\
g - 604 ’\\‘\
< A M
o .
8 . e—FIR-ZMS
o] ;c\'
1004 \,\. —~
—~
) FTSA YN A
0 5'0 I(;O 150 2;0 2%0
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Fig.7. Adaptive null progress for the coherent

jammer No.1.
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Fig.8. Adaptive null steering for the coherent
jammer No.l: (a) LMS beamformer, and

(b) ZMS beamformer.
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Fig.9. Output mean-square error.

of 0.025. The amount of the MSE for the LMS
case is almost 10 times that for the ZMS case, and
the. convergence time to reach the equal level of
MSE for the LMS case is almost three times
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greater than that of the ZMS case. Fig. 10 com-
pares the output error performances. Both ZMS
arrays are superior to the LMS case. The main
reason for this is that the trace of the input signal
correlation matrix for the ZMS case is greatly
smaller than that of the LMS array. Using the
ZMS array having 79-tap FIR notch filter, the
array output spectrum is plotted in Fig. 11. The
target signal is completely recovered, but the
degree of jammer rejection is dependent upon
the coherency with the target signal. Fig. 12
shows the directional gain change for two
jammers as the signal separation ratio increases.
It is seen that the main-beam gain is almost
unchanged, but the directional gain change for
two jammers gradually increases as the signal
leakage increases.

VII. Conclusion

An adaptive nulling algorithm with a residual
noise constraint is presented to synthetically
overcome some drawbacks associated with the
conventional LMS algorithm, The proposed
method is to remove the target signal from the
array input signal by means of prefiltering and to
eliminate the reference signal prior to optimization
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processing. A new algorithm is constrained to the
residual noise level of the adaptive processor.
Instead, it does not require the reference signal
generation. The analysis and simulation results
show the effectiveness of the proposed algorithm
(ZMS) for coherent and/or incoherent inter-
ference rejection, wide dynamic range of
convergence factor, rapid adaptation rate, and
small mean-square error in comparison with the
conventional LMS algorithm. Two types of ZMS
arrays can be realized depending on the types of
input notch filter, i.e., spatially notch filtered
ZMS array and the frequency domain notch
filtered ZMS array. Analysis and simulation
results show that reducing the input signal power
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results in the rapid adaptation rate, the wide
convergence range and more stable system, and
small mean-square error. However, these
arrays can be sensitive to both the array imper-
fection and beam steering error.
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