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An Efficient Approach in Analyzing Linear Time-Varying

Systems via Taylor Polynomials
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Abstract

This paper presents an efficient method of analyzing linear time-varying systems via Taylor
polynomials. While the approach suggested by Sparis and Mouroutsos gives an implicit form for
unknown state vector and requires to solve a linear algebraic equation with large dimension when
the number of terms increases, the method proposed in this paper shows an explicit form and
has no need to solve any linear algebraic equation.

L Introduction {20] are to achieve more accurate solution with

) small number of terms and to reduce the comput-
Sparis and Mouroutsos [1] used the Taylor  atignal burden than the Walsh functions.

polynomials in analyzing a class of linear time- The final linear algebraic equations derived by
varying systems and obtained the feedback gains Sparis and Mouroutsos for the analysis of linear
for the optimal control problems with quadratic time-varying systems is given as

performance index. Their motivations of adopting
the Taylor polynomials rather than the Walsh

functions [2]-[8] or Block pulse functions [9]- H,
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Where H and Hi’ i=1,2, . . , n are unknown
matrices to be calculated and P(rxr) is the oper-
ational matrix of integration for the Taylor
polynomials. Also, for each j=1,2, .., 8, 6j is
an nxr matrix each of whose rows is an 1xr
coefficient vector of the Taylor series expansion of
the function in input matrix and G, is a coefficient
matrix corresponding to a coefficient vector of the
Taylor series expansion of the input function. In
eqn. (1), it should be observed that 1) eqn.(1) is
not an explicit form for unknown matrices H
and Hi’ i=1,2, . .., n, and 2) as the number of
terms, r, increases, the dimension of eqn.(1) also
becomes large. Thus it becomes very difficult
to solve eqn.(1).

In this paper, we present another approach of
analyzing a class of linear time-varying systems via
Taylor polynomials in order to solve the problems
included in their results. Our result is an explicit
form for unknown state vector and does not
require to solve any linear algebraic equation
and thus does not include the procedure of matrix
inverse which is generally difficult to compute.

H. Problem Formulation

When a function £(t) is expanded at the neigh-
borhood of t=0 as

()= 56 ¢, (1), te0,D)

where
é. (1) =

¢,(t), for i=0, 1,. . ., are called Taylor series
basis functions [1]. Also a linear combination of
finite number of Taylor series basis functions is
called a Taylor polynomial. For an integer m =>1,
let $(m) (t) be the m-vector function defined by

(# (1), (1), #uy (1)), t(0,1),
(4)

Py (1) =

where the superscript T denotes thé transpose.
Let us consider the following linear time-

varying system

A(t) x()+B(t) u(t),

x (0) =initial vector,
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where x(t) is an n-dimensional state vector, u(t)
is an r-dimensional input vector, and A(t) and
B(t) are nxn and nxr time-varying matrices,
respectively. For each ij=1,2, . .-, n, let a..(t)
be the entry in i-th row and j-th column of A(t)
and for each i=1,2,. . ., n and k=1,2, . . ., 1, let
bik(t) be the element in i-th row and j-th column
of B(t). Assume that all the elements of A(t),
B(t) and the input vector function are analytic in
the time interval [0,1); then the expansions of
those elements viam Taylor series basis functions
are as follows:

(6)
(7)

ay, (1) = (am 810 a1, m-1) Am (1)
bic (1) = (bixe b *bikym-1]) Amy (1)
and

(8)

Uy (1) = (ke Uke Ukom—1) B (1) .

Then the expansion of state variables x(t) via m
Taylor series basis functions is

(9)

% (1) = (Xio Xin* Xim-1) By (t).

Our problem is to find a formula, which has an
explicit form and does not require the inversion
of large matrix, for the vectors [Xio xil‘ ..

Xi m—I]‘ for i=1,2, . ., n, in terms of X(o),
[aijo aijl .o aii’m_ll-_for i,j=1,2,. . ._,- n, [blko
bikl' .. bik,m~1 fori=1,2,..,nand k=1,2, .., 1,

and [uko‘ Uy uk,m-l] fork=1.2,...,r.
I0. A Mathematical Preliminary

Let there be given the following two arbitrary
Taylor polynomials each of which is a linear
combination of m Taylor series basis functions;

p(t) =pede (t) +pid (t}) + +pm_, B (1)

£p" b (1) (10)
and
q (t) = 4Qe Bo (t) +Ch [ (t) + '“+Qm41 P (t)
24" fm (1) (11)
where
p'= [p! Pt "Pm-1) (12)
q"= (90 a1 "m-1]. (13)

Then, it is easy to show that the multiplication
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of two functions p(t) and g(t) can be approxi-
mated as a linear combination of m Taylor series
basis functions as follows:

p(t) a(t)=h" ém (1) (14)

where

Tre@e
Podsi +P1qo

h=|pe@i-1 tpr1gi-2t - +Pi-1 G <+ i-th row

[PoGm-11P1Qm-zt -+ Pm-190]. (15)

In the above, the terms which have higher order
than ¢m_1(t) are neglected. The validity of this
approximation [1] is confirmed by the fact that
the considered time domain ist € {0, 1).

Now, the integration of the multiplication of
two functions p(t) and q(t) cna be approximated
as a linear combination of m Taglor series basis
functions via the operational matrix for forward
integration [1], P(mxm), as

A'p(s)uq(s)ds= £ h™ dm) (s)ds

;hTP(mxmb ¢(mb (t) (16)
where
01000---0 0 0
003000 0 0
000300 0 0
P(mx) = 1 (17)
000000 =25 10
000000 0
000000 0 O |

We can show that when P(t) is a nxn matrix and
q(t) is a nx1 vector, J: p(s)q(s)ds as can be
similarly expressed.

Theorem 1.

Let there be given A(t) and X(t) as in eqn.(5).
For each ij=1,2,. . ., n, let a.(t) be the entry in
i-th row and j-th column of A(t). And let the
expansions of ai-(t) and the each function of
x(t) be expressed as follows:

au(t)i[am B0 Bumet) B (1), i,j=1,2,---,n

(18)

X (1) = (X0 X Xpomo1) ey (1), i,=1,2,-+,n(19)

(1168)

Also, let us define the nxn matrix A, and nx1
vector X, as

[a1w 812w *** Biow
anw Baw ‘7" 8w
Ay= (20)
l8niw  8naw " &pnw
[ Xiw
)‘(wz thv
L Xnw (21)
where w=0,1, .. ., m-1.
Then,
t
f A(s)X (s)ds
= [Aozo, Ao)_(1+A1 )_(o, Tty Aoz(_m-1+A1)_(m—2+
+Am—l)_(9] Proxm Sm (). (22)
Proof:
Since
(8 () aunk) -am(t) x (t)
AOX® = | ® an ) - 2 (t) xz.(t)
\_am (t) an (t) *++ ang (1) Xn (t)

[an(t)x:(t) +ai (O x:(t) ++ +am )% (1)
—|an 1) x: (1) +an(t) xs () + - +am ()% (1)

L 8m (t)xl(t) +an!(t)xx(t) + - +ann(t)xn (t)
@3)

the integration of A(t) X(t)is

5t A(s)X(s) ds

At 2 (8)x: (s) a1z (s)xa (s) + -
=| Ah¥an(s)xi(s) +az(s)x,(s)+ -

Jot {an: (s) % (s) tans (s) xq (s) + -

+ain(s)xa(s)tds
+azn(s)%a(s)}ds

+ann(s)xa(s) 1ds (24)
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The first row in the eqn.(24) is

St {an (s) xi(s) +an(s) X (s) + ++ +am(s)xa(s)}ds
=4 au(s)xi(s)ds+ ftai(s) xs(s)ds+ -

+ filain(s) xn(s)ds. (25)

By using the property of eqns.(14) and (16), we
obtain
Jotan (s) xi(s)ds
= (110 %100 10X T 811100,
+ ¢ Fam_1X10) Pim ) Gy (1)
Ji'aaz(s) x: (s)ds

= [Enoxzo, B120Xa1 F8121X20, ***, Br20X2,m 1 +amXam-2

+ - Fainmo1 Xs0) Punm $m (t)

*y ByoXLmo1 T 811 X1,m-2

7Y aun (s)xn(s)ds
= [81n0Xno, 2ineXn1 T+ BintXnes ***s BinoXnm-1T 81nXnm-2

+ - +8inm-1Xno ]P(mxm) S (O (26)
Therefore the first row in the eqn.(24) becomes

S e (s) i (s) +au(s)x (s) + -+ +awm(s)xn(s)t ds

= (B10Xos B10X1 +201Xos =7, QroXm-y T 811Xm_zF

+2&1m-1%0]) Pinsom @) (t) @7
where

aiw= (811w B12w** Binw) (28)

xw={(Xiw Xsw'**Xnw] (29)

for w=0,1,..,m-1.
Similarly, for the second row in the eqn.(24),
we can obtain easily

Jt{aa ()% (s) +820(8) %2 (8) + - +aan(s)xn(s)}t ds

= (as0Xo, B20X1+82Xo, ***) B2oXm—1H8nXm s+ o

82,m-1%0) P xm) $imi (t) (30)
where

8= (82w 822w " 2enw) 31)

*w=(X1w Xzw"**Xnw) (32)

for w=0,1, . .,, m-1, and so forth.
Finally, we find
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S A(s) X(s)ds
810 X0 10 Xi +§u {n"'%m&mq’*&u )_(m—z+
820 Xo 3 X1 +ayn Xo'  BaXm- \Jﬂln )Sm»z+
8no Xo @no&l+§m§o"'§m’£m4+&m&n—z+
+81, m-1Xe
+a; mo1X
= - Pinxm) m (1) (33)
+8n,m-1%o
Since
aw ayw anw ' 8mw
8w | | nw 8pw 'amw
= — A,
&nw 8niw 8naw ‘"' 8nnw (34)
we obtain finally
LTA(s) X(s)ds
= [Ao)_(o Ao)_(x +A1Xo "'Ao)_(m‘1+Ame~z+
+Am_1 Xo) Pimsm) @i (1) (3%
This completes the proof.
Q.E.D

IV. Main Result

We present the main result in the following.
Theorem 2.

For the linear time-varying system in eqn.(5),
when the entries of A(t), B(t), and U(t) are
expanded as in eqns.(6), (7), and (8), respectively,
and the expansion of each function of x(t) via m
Taylor series basis functions is

Xi (1) = Xio Xurr Ximor ) oy (1), (36)

the 1xm vectors [Xio Xil e Xi,m-ll for i=1,2,
. ., . can be obtained by

X, =X(0)
Aon_ +A| - ‘+‘ +Av_ Xo
Xv_‘— Q: 2 XV 3 H +
V-1
BoUv.:+B,Uy_s+ - +Bv_, U
LAS \1_11! 20 (37)
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where v=2,3, .., m and
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[l(o&x"'_XmAJ” @(0) Q Q]

Bw == >buw buw"'bmv =[Aolo AOK,+AIKO."A°_)—(M_]+Al-)-(m4+
buw baw' baw +Am-1Xo) Broxm
. +[Boﬂo Bo!l+Bxuu“'Bo_Um4+B1Em—z+ hbad
| boiw brnzw*** bn (38
v bosw ooy ) +BasUs) P )
Uw=| uiw - . __ isobtained. —————— — -
Uzw Substituting eqn.(17) into eqn.(43), we find
[ urw (39) (Xo X Xmoy]— (X (0) 0+ 0)

for w=0,1,. ., m-1.
Proof:
Jntegrating the eqn.(5) from O to t, we obtain

X({t)—X )= /4" A(s)X(s)ds + ' B(s)U (s)ds
(40)

Expanding the state variables with m Taylor
series basis functions

X@W)=[ X
X2 (t)

L Xn (1)

[ X0 o (t) +xn (t) + ot x Lm-1 $m_s (t)
Xz B0 (t) +xz &1 (t)+ o+ Xamot o ()

L Xno o (t) +Xn1 b1 (t) + nm-1 Pm_t (t)
=Xo ¢ (1) +X,¢h1 W4 +Xmor P (O
(41)
is obtained.

Substituting this into the eqn.(40) and using the
Theorem 1, we find

(%2 Xm-1) By (1) — (x(0) 0°7'0) dm) (1)
=[AXo AcXi+AXo A X1 +A X2+
+Amn-1Xo ] Pimxm) b (t)
+ (Bl BeUi+B, U, - BeUm-1 +BiUpn-2+ -+
+Bu-1Uo) Pimxm) $mi (1) (42)

Since the eqn. (42) should be satisfied for all
t in the time interval t € [0, 1),

(1170

Ay Xi+A X
‘____2
Ao_)_(_m—z +A1_Xm—: + - +Am—z_Xo
m—1 )

=[(0 AX,

Bogmfz‘*'Blem—s'f" i Bm-:_Un

m—1

J (44)

By equating each column in eqn.(44), we can
obtain finally

_)So ‘_X (0) = Q

X, —0=A,X%+B. U

X,—0= AX:tA: X, BoU:+BU,
2 T g

XV—1—9= Ao_)_(v-z +Al_)_(v-: + -+ Av-zXo

V—1 +
Bo uv—2+BlL_IV‘S+ -+ By, Qo
V-1
on__m—z‘*'A\Xnus"’ ot +An_s )_(n
)_(mAl*Q: m—1

Bo!m—z +B|!m—-3 + .- +Bm-z_uo
m—1

(45)

This.completes the proof.
Q.E.D

V. An Example

Let us consider the following linear time
varying system [1]

X(1)=A() X(t)
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where

% (0) }

0 0
A(t)—lt OJ and X(O)—ch(O)J

i\ 1 4.
W hen the n\lmbel m ot telnls 18 4,

ay (=2 ()=a, (t)=(0 0 0 0) B (t)
an{(t)=t={0 10 0J¢y, (1)

Therefore, we find

00

00
A°=A1=A3={0 0} and Alz{ 1 0-

|

The eqn.(45) yields

Thus, the solution of this system is

0
X](t) — l]
o eo]=] 1 w0+ 1| #0
1
= tz
1+%

The solution obtained by eqn.(45) is same as that
of Sparis and Mouroutsos [1], while this approach
is much simpler than that of [1].

V1. Concluding Remarks

In this paper, we have presented an efficient
method of analyzing linear time-varying systems
via Taylor polynomials. While the approach based
upon the product and coefficient matrix proposed
by Sparis and Mouroutsos yields an implicit form
for unknown state vector and requires to solve a
linear algebraic equation with large dimension
when the number m of terms increases, the
method proposed in this paper yields an explicit

(1171
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form for unknown state vector and has no need to
solve any linear algebraic equation and further
more does not include any inversion of matrix.
Therefore it is obvious that the method suggested
in this paper shows noticeable merits in form,
computation and numerical stability over that of
sparis and Mouroutsos [1].
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