On Cn-Semistratifiable over \alpha

Song-Ho Han

Kangwon University, Chuncheon, Korea

1. Preliminaries

In this section we now introduce some definitions and results which are used throughout this paper.

DEFINITION 1.1. (Vaughan) An ordinal number α is called an initial ordinal provided that for every ordinal $\beta < \alpha$, there exists an injection from β to α , but there does not exist an injection from α to β . We assume that cardinal numbers and initial ordinal numbers are the same.

Let ω stand for the first infinite ordinal.

DEFINITION 1. 2. (Vaughan) Let (X,\mathcal{J}) be a $T_1-space$ and let α be an initial ordinal, $\alpha \geq \omega$. The space (X,\mathcal{J}) is said to be stratifiable over α or linearly stratifiable provided that there exists a map $S: \alpha x \mathcal{J} \to \mathcal{J}(\text{called an } \alpha-\text{stratification})$ which satisfies the following (where we denote $S(\beta, U)$ by U_{β})

LS1: $\overline{U}_{\alpha} \subset U$ for all $\beta < \alpha$ and all $U \in \mathcal{J}$.

LS2: $U|U_{\beta}: \beta < \alpha| = U$ for all $U \in \mathcal{J}$.

LS3: If $U \subset W$, then $U_{\beta} \subset W_{\beta}$ for all $\beta < \alpha$

LS4: If $r < \beta < \alpha$, then $U_{\gamma} \subset U_{\beta}$ for all $U \in \mathcal{J}$.

DEFINITION 1.3. (Vaughan) A T_1 —space X is called α —stratifiable provided that α is the smallest initial ordinal for which X is stratifiable over α . A space which is stratifiable over ω is called stratifiable, and the map S is called a stratification.

DEFINITION 1. 4. (Vaughan) A collection P of pairs $P=(p_1,p_2)$ of subsets of a topological space (X,\mathcal{J}) is said to be a linearly cushioned collection of pairs with respect to a linear order \leq provided that \leq is a linear order on P such that $(U|P_1:P=(P_1,P_2)\in P^1|)$ $\subset U|P_2:p=(P_1,P_2)\in P^1|$ for every subset P^1 of P which is majorized (i.e., has an upper bound) with respect to \leq .

DEFINITION 1.5. (Ceder) A collection P of pairs is called a pairbase for (X, \mathcal{J}) provided that (1) for each $P = (P_1, P_2) \in P$, P_1 is open and (2) for every x in x and every open set W containing x, there exists $P = (P_1, P_2) \in P$ such that $x \in P_1 \subset P_2 \subset W$.

THEOREM 1.6. (Vaughan) If (X, \mathcal{J}) is a T_1 -topological space and α an infinite initial ordinal, then the following are equivalent

- (1) (X, \mathcal{J}) is stratifiable over α .
- (2) (X, \mathcal{J}) has a linearly cushioned pair-base P and α is cofinal with P.
- (3) There exists a family $|g_{\beta}: \beta < \alpha|$ of functions with domain X and range \mathcal{J} such that the following hold.
 - (a) $x \in g_{\beta}(x)$ for all $\beta < \alpha$
 - (b) For every $F \subset X$, if $y \in [(U|g_{\beta}(x): x \in F|)]$ for all $\beta < \alpha$, then $y \in \overline{F}$.
 - (c) If $\beta < \gamma < \alpha$, then $g_{\beta}(x) \supset g_{\gamma}(x)$ for all x.

A linearly semistratifiable space is introduced by K.B.Lee [4]. The new class of spaces is an extension of semistratifiable spaces, definitions and main results of which are collected in the following.

DEFINITION 1.7. (K.B. Lee) Let (X, \mathcal{J}) be a topological space and α be an initial ordinal not less than ω . The space X is said to be sewistratifiable over α or linearly semistratifiable provided that there exists a map $S: \alpha \times \mathcal{J} \rightarrow |closed|$ subsets of X| (called an α -semistratification) which satisfies the following

LSS1: For every $U \in \mathcal{J}$, $U = U \setminus S(\beta, U)$: $\beta < \alpha \setminus LSS2$: If $U, V \in \mathcal{J}$ and $U \subset V$, then $S(\beta, U) \subset S(\beta, V)$ for all $\beta < \alpha \setminus LSS3$: If $\gamma < \beta < \alpha$, then $S(\gamma, U) \subset S(\beta, U)$ for all $U \in \mathcal{J}$.

DEFINITION 1.8. (K. B. Lee) A collection P of pairs $p=(p_1,p_2)$ of subsets of a space (X,\mathcal{J}) is called a pair-net provided that for every x in X and every open U containing x, there exists a $P=(p_1,p_2)$ such that $x\in P_1\subset P_2\subset U$.

THEOREM 1.9.(K.B.Lee) If (X, \mathcal{J}) is a space and α an infinite initial ordinal, then the following are equivalent:

- (1) X is semistratifiable over α .
- (2) X has a linearly cushioned pair-net P with which α is cofinal.
- (3) There is a function g from $\alpha \times X$ into \mathcal{J} such that
 - (a) for each $x \in X$, $x \in \bigcap \{g(\beta, x) : \beta < \alpha\}$
 - (b) if $x \in g(\beta, x_{\beta})$ for each $\beta < \alpha$, then the net $|x_{\beta}: \beta < \alpha|$ accumulates at x
 - (c) if $\gamma < \beta < \alpha$, then $g(\gamma, x) \supset g(\beta, x)$ for every $x \in X$.
- (4) There is a function g from $\alpha \times X$ into \mathcal{J} such that (a) for each $x \in X$, $\cap \{g(\beta, x) : \beta < \alpha\} = c1 \ |x| : (b)$ if $x \in g(\beta, x_{\beta})$ for each $\beta < \alpha$, then the net $|x_{\beta}: \beta < \alpha|$ converges to x: and (c) if $\gamma < \beta < \alpha$ then $g(\gamma, x) \supset g(\beta, x)$ for every $x \in X$.

DEFINITION 1.10. A pair-net is called a cn-pairnet if given any convergent net $\chi_s \to \chi$ and an open sudset U containing χ , there is a $P = (P_1, P_2) \in P$ such that $\chi \in P_1 \subset P_2 \subset U$ and $|\chi_s|$ is eventually in P_1

2. Definition of cn-semistratifiable over α and some characterizations

DEFINITION 2.1. Let (X, \mathcal{J}) be a topological space and α be an initial ordinal not less than ω . The space X is said to be cn-semistratifiable over α or linearly cn-semistratifiable provided that there exists a map $S: \alpha \times \mathcal{J} \rightarrow \{closed\ subsets\ of\ X\} (called\ an-cn-semistratification)$ which satisfies the following.

a) For every $U \in \mathcal{J}$, $U = U | S(\beta, U) = \beta < \alpha |$

- b) I; \forall , $V \in \mathcal{I}$ and $U \subset V$, then $S(\beta, U) \subset S(\beta, V)$ for all $\beta < \alpha$
- c) If $\gamma \in \beta < \alpha$, then $S(\gamma, U) \subseteq S(\beta, U)$ for all $U \in \mathcal{J}$
- d) For each convergent net $\chi_{\beta} \rightarrow \chi$ and $U \in \mathcal{J}$, containing χ , there is a $\beta < \alpha$ such that $\chi \in S(\beta, U)$ and $|\chi_{\beta}| \beta < \alpha|$ is eventually in $S(\beta, U)$.

DEFINITION 2.2. A topological space X is called $\alpha - cn$ semistratifiable provided that α is the smallest initial ordinal for which X is cn-semistratifiable over α . A space which is cn-semistratifiable over ω is called cs semistratifiable.

THEOREM 2.3. If (X, \mathcal{J}) is a space and a an infinite initial ordinal, then the following are equivalent:

- (1) X is cn-semistratifiable over α .
- (2) X has a linearly cushioned on pairnet P with which a is cofinal.
- (3) There is a function g from $\alpha \times X$ into $\mathcal J$ satisfying Theorem 1.9(1) and an additional condition:
- (4) Given a convergent net $|x_{\beta}| \beta < \alpha| \rightarrow x$ and an open subset U containing x, there is a $\beta < \alpha$ such that $x \notin U$ $g(\beta, y)$ and $|\beta < \alpha| x_{\beta} \notin U$ $g(\beta, y)$ such that

 $J = | \gamma_0 | \gamma \leq \gamma_0 < \alpha | is cofinal.$

Proof. For $(1) \leftrightarrow (2)$, See the proof of Theorem 1.13

For (2) \leftrightarrow (3), Let P be a linearly cushioned cn pairnet for X, and α cofinal with P.

There is a subclass $P' = |P_{\beta}: \beta < \alpha|$ such that for every $P \in P$ there is a $\beta < \alpha$ such that $P \leq P_{\beta}$.

For each x in X and each $\beta < \alpha$, define $g(\beta, x) = X \cdot c1(U|P_1: x \in P_2)$ and $P = (P_1, P_2) \leq P_{\beta}$.

Lee. K. B proved g is a linearly semistratifiable function 4. To show g satisfies (d). Consider the following.

$$\begin{array}{c} U \\ y \in V \ g(\beta, \ y) = U \\ -V \in V \ | \ X - cl(U|P_1: \ y \in P_2 \ \text{and} \ P = (P_1, P_2) \leq P_s|) \end{array}$$

$$= X - \frac{\bigcap}{V} \in \nu(cl(U|P_1: \ y \in P_2 \ \text{and} \ P = (P_1, P_2) \leq P_s|)$$

which is contained in $X-(cl(U|P_1=y\oplus P_2 \text{ and } P=(P_1,P_2)\leq P_\beta|))$ If $|x_\beta|\beta < \alpha|$ is eventually in $x\in P_1 \subseteq P_2 \subseteq U$ and $P=(P_1,P_2)\leq P_\beta$,

 $J = |\beta < \alpha \mid \chi_{\beta} \in \overline{y} \underset{\text{\not \in V}}{\overset{U}{=}} V |g(\beta, y)| < \beta. \text{ And consequently. } J \text{ is cofinal.}$

(3) \Rightarrow (1) Let g be a map as is described in (3). Define a map S: $\alpha \times \mathcal{J} \rightarrow |closed\ subsets\ of\ X|$ by $S(\beta, U) = X - U|g(\beta, \chi): \chi \in X - U|$.

 $S(\beta, U) \subset X - (X - U) = U$. Since $\chi \in g(\beta, \chi)$ for all $\beta < \alpha$. Conversely, assume $\chi \notin U | S(\beta, U) : \beta < \alpha |$

Then $\chi \in U|g(\beta, y): y \in X-U|$ for all $\beta < \alpha$. This implies there is an $y_{\beta} \in X-U$ such that $\chi \in g(\beta, y_{\beta})$ for each $\beta < \alpha$.

Thus $|y_{\beta}: \beta < \alpha|$ satisfies the condition (b) of (4), and hence converges to χ .

Since X-U is closed, we have $\chi \in cl(|y_{\beta}; \beta < \alpha|) \subset X-U$. Finally the condition(d) of Definition 2.1 is satisfied by the property (d) of g. Thus the proof is completed.

3. Properties of Cn-semistratifiable over α

THEOREM 3.1. Every subspace of a cn-semistratifiable over α is a cn-semistratifiable over α

Proof. Let S be an α -cn-semistratification of X, and Y be a subspace of X. Define $S^1: \alpha \times \mathcal{J}_{\nu} \rightarrow \{closed\ subsets\ of\ Y\}$ by the restriction of S to \mathcal{J}_{ν} -open subset of X. It is easily verified that S is an α -cn-semistratification for Y.

Now, we shall prove that a finite product of spaces cn-semistratifiable over the same α is again cn-semistratifiable over α .

LEMMA 3.2. Let α be an infinite initial ordinal number, and Let $|A_{\lambda}: \lambda \in \Lambda|$ be a family of linearly ordered sets such that α has cardinality strictly greater than that of A, and α is cofinal with A for all $\lambda \in \Lambda$. If Λ is finite or if α is a regular ordinal, then $A = \bigcap |A_{\lambda}: \lambda \in \Lambda|$ can be well-ordered so that for every majorized $H \subset A$, we have Pr(H) (i. e., the λ th projection) is majorized in A_{λ} for all $\lambda \in \Lambda_{\lambda}$ and α is cofinal in A. Further, if α is the smallest initial ordinal cofinal with each A_{λ} , then α is the smallest initial ordinal cofinal with A.

Proof. See the proof of Lemma 5.1[9]

Theorem 3.3. Let α be an initial ordinal number $\alpha \ge \omega$. Let X_t be cn-semistratifiable over α for each $i < \omega$. Then $\Pi | X_t : i \le n |$ is cn-semistratifiable over α for all $n < \omega$.

Proof. Each X_i has a linearly cushioned cn-pair-net P_i such that α is cofinal with P_i , For each $n < \omega$ and each $Q = (P^1, \dots, P^n)$

 $\Pi|P_i:\ i\leq n|\ \text{ define }\prod_{i=1}^nP_1^i=|\chi=(\chi_i):\ \chi_i\in P_1^i\ \text{ for }i\leq n|\ \text{, and Similarly define }\prod_{i=1}^nP_2^i,$ Set $B_{Q1}=\prod_{i=1}^nP_1^i,\ B_{Q2}=\prod_{i=1}^nP_2^i,\ and\ B_n=|B_{Q1},B_{Q2}|:\ Q\in\Pi|P_i:\ i\leq n|\ \text{ and order the index set of }B_n\ \text{ as Lemma }3.2\ \text{ so that }\alpha\ \text{ is cofinal with }B_n\ \text{ clearly }B_n\ \text{ is a cn-pair-net for }\Pi|X_i:\ i\leq n|\ \text{, and if we consider }(\chi_i)\in\Pi|X_i:\ i< w|\ \text{, then }B=U\ |B_n:\ n<\omega|\ \text{ is a cn-pair-net for }\Pi|X_i|\ i< w|\ \text{.}$ We now show that each B_n is a linearly cushioned collection of pairs in $X=\Pi|X_i:\ i\leq n|\ \text{.}$

Suppose H is a majorized subset of $\prod_{i=1}^{n} P_{i}$ and $\chi \in U(B_{Q2}: Q \in H)$.

Let $N_t = X_t - (U|P_1: P = (P_1, P_2) \in P_{\gamma t}(H)$ and $\chi_t \notin P_2|$). Then N_t is an open neighborhood of χ_t in X_t because $P_{\gamma t}(H)$ is a majorized subset of P_t . Finally, $\prod_{t=1}^n N_t$ is a neighborhood of χ in X which misses $U|B_{q_1}: Q \in H|$. Thus $(U|B_{q_1}: Q \in H|) = CU|B_{q_2}: Q \in H|$, and this completes the proof.

Lemma 3.4. Let X be cn-semistratifiable over α and Y be a closed subspace of X with an $\alpha-cn-semistratification <math>S$. Then there is an $\alpha-cn-semistratification <math>T$ for X such that $S(\beta,V\cap Y)=T(\beta,V)\cap Y$ for every $\beta<\alpha$ and every open V in X.

Proof. Let S' be any α -cn-semistratification for X. Detine an α -cn-semistra-

tification T for X as follows:

$$T(\beta, V) = S(\beta, V \cap Y) \cup S'(\beta, V - Y)$$

It is clear that T is an α -cn-semistratification.

Now, we show that T satisfies (d).

Let $|\chi_{\beta}|$ be a net in X converging to χ . Given an open set U of X containing χ , if $\chi \in U \cap Y$. Since $U \cap Y$ is a relative open subset in Y there is $\gamma < \alpha$ such that $|\chi_{\beta}|$ is eventually in $S(\gamma, U \cap Y)$. Therefore $|\chi_{\beta}|$ is eventually in $T(\gamma, U)$

If $\chi \in U \cap Y$ it is clear.

This completes the proof.

Lemma 3.5. The union of two closed (in the union) subspaces which are cn-semistratifiable over α is also cn-semistratifiable over α .

Proof. Apply Lemma 3.4 with respect to the common subspace.

Theorem 3.6. If X is a locally finite union of closed cn-semistratifiable over α , then X is cn-semistratifiable over α .

Proof. By Lemma 3.5, the proof is verified easily.

4. Net - covering maps

Frank Siewiec introduced the concept of sequence—covering map in [8]. Now, we introduce the extended concept of sequence—covering map.

Definition 4.1. A mapping $f: X \to Y$ is said to be net covering if given any convergent net $y_{\beta} \to y$ in Y, there exists a convergent net $\chi_{\beta} \to \chi$ in X such that $f(\chi_{\beta}) = y_{\beta}$, $\beta < \alpha$. Theorem 4.2. The image of a cn-semistratifiable over α under a closed continuous net-covering map is cn-semistratifiable over α .

Proof. Let f be a closed continuous net—covering map from cn—semistratifiable over αX onto a space Y. Let S be a $\alpha - cn$ —semistratification for X. For each open V of Y and $\beta < \alpha$, Let $T(\beta, V) = f(S(\beta, f^{-1}(V)))$ clearly T is a α —cn—semistratification. $y_{\beta} \rightarrow y$ be a convergent net in Y.

Then there is a convergent net $\chi_{\beta} \to \chi$ in X such that $f(\chi_{\beta}) = y_{\beta}$ for $\beta < \alpha$. Since X is cn-semistratifiable over α , there exists a $\gamma < \alpha$ such that $|\chi_{\beta}| |\beta < \alpha|$ is eventually in $S(\gamma, f^{-1}(V))$ for any open V. Thus, y_{β} is eventually in $T(\gamma, V) = f[S(\gamma, f^{-1}(V))]$.

W. K. MIN proved that K-semistratifiable over α with α -fundamental system of neighborhoods $\{W_{\beta}(\chi): \beta < \alpha \text{ and } W_{\beta}(\chi) \subset W_{\gamma}(\chi) \text{ for } \gamma < \beta < \alpha \}$ for each $\chi \in X$ is stratifiable over α .

Theorem 4.3. A cn-semistratifiable over α with α -fundamental system of neighborhoods $|W_{\beta}(\chi): \beta < \alpha|$ for each $\chi \in X$ is stratifiable over α .

Proof. Let S be an α -cn-semistratification for X. Suppose that $P \in V$, where V is open. Let $|W_{\beta}(P): \beta < \alpha|$ be α -fundamental system of neighborhoods for p such that $V \supset W_{\gamma} \supset W_{\beta}$ for $\gamma < \beta < \alpha$.

If $W_{\beta} \subset S(\beta, V)$ for each $\beta < \alpha$, choose points $y_{\beta} \in W_{\beta} - S(\beta, V)$ for each $\beta < \alpha$. The net convergents to p, and so there is such that $\{y_{\beta}: \beta < \alpha\}$ is eventually in $S(\gamma, V)$. Therefore, for some $\gamma < \alpha$, $W_{\gamma}(p) \subset S(\gamma, V)$, By Lemma 3.4 [6] X is stratifiable over a.

References

- 1. Carlos J. R. Borges, On Stratifiable spaces, pacific J. Math., 17(1966), 1-16.
- 2. G. D. Creed, Concerning semistratifiable spaces, pacific J. Math., 32(1970), 47-54.
- 3. R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, *Duke Math. J.*, 39(1972), 253-263.
- 4. K.L.Lee, Linearly semistratifiable spaces, J. Korea Math. Soc., Vol 11, No.1, (1974).
- 5. D.J. Lutzer, Semimetrizable and Stratifiable spaces, Gen. Top. Appl., 1(1971), 43-38.
- 6. W. K. Min, On Linearly Generalized metric spaces and separation properties by αocmaps, the paper for the Degree of Doctor, (1987).
- 7. R. R. Sabella, Convergence properties of neighboring Sequence, proc, Ams., 38(1973), 405-409.
- 8. Frank Siwiec, Sequence—covering and countable bi—quttient mapping, Gen. Top. Appl., 1(1971) 143-154.
- 9. J. E. Vaughan, Linearly stratifiable spaces, pacific J. Math., 43(1972) 253-266.

(요 약)

이 논문에서는 CS-Semistratifiable 공간보다 더 일반화된 공간 Cn-Semistratifiable을 정의하며 그에 따른 여러가지 성질들을 조사하였다.

위상 공간 (X, τ) 에 대하여 $\alpha \times \tau$ 에서 X의 폐집합족으로의 함수 S가 존재하여 다음 조건들을 만족할 때 공간X는 Cn-Semistratifiable over α 라 정의한다.

- a) 임의의 개집합 U에 대하여 $U=U|S(\beta,U):\beta<\alpha|$
- b) U, V가 X의 개집합이고 $U \subset V$ 이면 모든 $\beta < \alpha$ 에 대하여 $S(\beta, V) \subset S(\beta, V)$ 이다.
- c) 만약 $\gamma < \beta < \alpha$ 이라면 임의의 개집합 U에 대하여 $S(\gamma, U) \subset S(\beta, U)$ 이다.
- d) X의 수렴하는 $net \chi_{\beta} \to \chi$ 와 χ 를 품는 임의의 개집합 U에 대하여 적당한 $\beta < \alpha$ 가 존재하여 $\chi \in S(\beta, U)$ 이고 $|\chi_{\delta}|$ 는 $S(\beta, U)$ 안에 eventual 하게 들어간다.

위의 정의에 의하여 다음과 같은 성질들이 증명되었다.

- 1. Strstifiable over a→cn-semistratifiable over→semistratifiable over a
- 2. 어떤 공간이 cn-semistratifiable over a이기 위한 필요충분 조건은 그것이 linearly cushioned cn-pairnet를 갖는 것이다.
- 3. cn—semistratifiable over a의 부분공간 역시 cn—semistratifiable over a 하다.
- 4. cn-semistratifiable over a의 유한개의 적공간 역시 cn-semistratifiable over a한다.
- 5. 폐 cn-semistratifiable over a 부분공간들의 합공간 역시 cn-semistrbtifiable over a 하다.
- 6. 폐연속 net-cevering 함수에 의하여 cn-semistratifiable over a 성질이 보존된다.

Introduction

In 1972, the concept of a linearly stratifiable space was introduced by J. E. Vaughan [9]

The class of linearly stratifiable space is composed of special sedclasses called α stratifiable spaces (Where α is an infinite cardinal number) of which the class of
stratifiable spaces is the subclass corresponding to the first infinite cardinal.

An analogous extension of the concept of a semistratifiable space [1] was introduced by K.B.Lee [4]

In this paper, a cn-semistratifiable over α is defined and some results will be given throughout this paper, all spaces will be T_1 .