REAYWLKHF LR ROERE) Journal of the Korea Society of Mathematical Education
1988. 6, Vol. XXVI, No. 2. Jun. 1988, Vol. XXV1, No. 2.

The Spherical Derivative Near An Essential Singularity

Mo Kén Sang

Young Nam University, Kyeong San, Korea

1. Introduction

In this paper we investigate the behavior of a meromorphic function in a neighborhood
of an essential singularity. '

In our discussion we need the concept of spherical distance. For a presentation of
this see [3). Let P=CU|o]| denote the extended complex plane or Riemann sphere. For
geometric purposes we view P as the sphere in R® with center (0,0,0) and radius 1.
The identification is given by explicitly by stereographic projection. A circle on P is
called a great circle if its image under stereographic projection is a great circle.
Similarly, the open unit disk D in the complex plane can be regarded as a hemisphere.

The spherical metric is the Riemannian metric

ldz )
1+1z)?
on P which is half the pull-back via stereographic projection of the restriction of the

An(z) ldzl =

euclidean metric to the sphere in R® The spherical metric has constant Gaussian
curvature 4. The spherical distance between z and w in P is defined by

de(z, w) = i"ffa (O 1dE),
where the infimum is taken over all paths & on P joining z and w. In fact, this infimum
is a minimum. The minimum value is attained for the shorter arc 7 of any great circle
through z and w. The arc 7 is unique unless z and w are antipodal points; when z and
w are antipodal then either of the subarcs of any great circle through z and w is a

possible choice for 7. In general, any path 7 that satisfies
dr(z, w) = f‘y/\}r(g) Idé’ |
is called a spherical geodesic. Explicitly,

arctan(lz—wl/l1+wzl|) if z,wEC

dP 3 =
(}z w) <arcilm(l/lzl) if z€C, w=90,

and dr(z, w) is half the angle at the center of the sphere that is subtended by any

geodesic.
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2. The spherical derivative
Let f be a meromorphic function in a plane region, and let a be pole of f order m.
Then

fiz) glz) An L4
( —————— s oeaa -
2oz (z a)™ (z2--a)

for z in some disk about a and g holomorphic in that disk. This yields that

. 0 if m22
. )

llm——j-—-z—'z- = { 1

seliiftz)] AT if m=1.

The spherical derivative f*(2) of f(z) is defined by

If'(2)]

) - T

whenever z is not a pole of f, and
. 1f(2)]
s _— — ettt
f*(a) = lim T
if ¢ is a pole of f. We note that f* is a complex-valued continuous function.

Theorem 1. Let f(z) be a meromorphic function in D*={z: 0<iz1<1| and have an
essential singularity at the origin. Then there exists a meromorphic function g in D*
and @ real number 8 in [0, 27) such that g® =f*, and Go(z) =g(z) g(ze'®) has an essential
singularity at the origin.

Proof First, suppose there is a sequence (z,) in D* with z,—20 and f(z,) =0 for
all n. Because [ has just countably many poles in D* it is possible to select 8 in
[0,27) so that z,e'® is not a pole of f for all n. Fix such a value of 8 Then the
function F,,(z)=f(z)/?(5e‘s) is meromorphic in D*. Since Fy(z,) =0 for all n, it follows
that F,(z) has an essential singularity at the origin.

Now, suppose such a sequence (z,) does not exist. The big Picard Theorem implies
that for any a in P, with at most two exceptions, there is a sequence (z,) in D* with
2,0 and f(z,) =a for all n. Fix such a value a. Then R(w)=(w—a)/(1+daw) is a
rotation of P and g=Ref is meromorphic in D* Since the spherical derivative is
invariant under rotations of the sphere, we have g*(z)=f*%(z) for all z in D*. Clearly,
glz,) =0 for all n, so the first part of the proof shows that there is a real number @

in [0, 2m) such that G.(z) =g(z)g(2e¢'®) has an essential singularity at the origin.
Remark. Set
f(2)= A [1—2)"]/ I 1+2)m
n= nz n=1 nz

Then [ is meromorphic on P—|0! and has an essential singularity at the origin. If

8- /3™, for j an odd integer and m a positive integer, then F,(z)=f(z)f'(2e“’) is a
rational function. Thus, F.(z) does not have an essential singularity at the origin for
¢ countable, dense set of value in [0,27). For 0%j/3™ the function Fe(z) does have an
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essentia singularity at the origin.

Theorem 2. Let f(z) be a meromorphic function in D* and have an essential singularity

at the origin. Then
1

linéﬁgup fz[f* (2) 2-—2—.

Proof. By Theorem 1, we can choose a meromorphic function g in D* and a real
number & in [0, 27) such that g* =f* and Ge(z) =g(z)g(ze'®) has an essential singularity
at the origin. The Casorati-Weierstrass Theorem implies that for every & >0 there is
a sequence (z,) in D* with 2,0 such that [Gs(z,) +11< €& The points g(z,) and
g(zqe'?) lie almost diametrically opposite on the Riemann sphere, and hence the spherical
length I, of the image of 1z]/=1lz,| by g(z) ‘s greater than 7n— &(e), where &€& =0 as
€—>(0. Let 7y be the image of !z|=1Iz,| by g(z). Then

lg'(2) | dz]

L=/yAs(w)ldwl = a2y 37509

s2miz,imax g% (2).
Combining these two inequalities, we obtain
lim sup l21f* (2) = lim sup lzlg®(z) 2 %—
Z-0 Z-0

Now we give a brief introduction to the hyperbolic metric. For a general discussion of
the hyperbolic metric we refer the reader tc [1] and [2].

Let G be a hyperbolic region in the complex plane; that is, the complement of G in C
contains at least two points. Then there is a holomorphic universal covering projection
[ of the open unit disk D onto G. If G is simply connected, then f is just a one-to-one
conformal mapping of D onto G. The hyperbolic metric A.(z)|dz| on G is defined as
follows: if a&G and HEf '(a), then

Acla) =1/1F(b)1(1—1b]Y).

The value of A (a) is independent of both the choice of 4 E&f~"(e) and the selection of
the covering f. It follows from the definition of the hyperbolic metric that

1

1—1z)?

whenever f is a holomorphic universal covering projection of D onto G.

Ac(f)If(2) | =

Example. Let G={z2: 0<!z|<R|. The function
w=f(z) =R exp( 2+ 1 ): DG

z—1

is a holomorphic universal covering projection. We have

1

Aglf(2))If(z)i=2,(z) = 1—1z|*°

2 1
lz—1]? I—lz:%"

Ac(w)|w!
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2 _ 1 |[1—2z|t
A Ty ey P L

Since w=R exp( :t; ), it follows that
fwl 2+1 _ z2+1
R = | exp( p— ) | =exp(Re P )
_ lz1*—1*(2—3)
=exp(Re ——q7—)
lz|*—1
I AP YL
. R 1—|z|? . . .
ence logm— =TI Therefore, the hyperbolic metric Az(w)ldwl on G is
Ac(w)ldwl= !

2|wllog(R/iwl) ~
A meronorphic function f on a hyperbolic region G is called a normal function if

ff(2)
supix—c(zT. ZEG} < oo,

Theorem 3. Let f be a meromorphic function in D*. If f has an essential singularity
at the origin, then f can not be normal in D*.
Proof. If f is normal in D*, then there exists a positive number M such that

1

. _ 1
¥ (2) SMApu(z) = 21z1log(1/121)

for all z in D*. This yields
lim sup lz|f* (2z) =0.
2-0
But lim sup lzIf*(2) Z—é-, since [ has an essential singularity at the origin. This
Z2-0

contradiction establishes the theorem.
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