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1. Introduction

The theory of operator ideals in Hilbert spaces have been developed by J. Calkin(2)
and R. Schatten (7), and in the period from 1965 to 1975, this theory was developed
into a separate discipline of functional analysis, which provides powerful methods for
other branches of mathematics. Important applications have been made to the geometry
of Banach space, to Brownian motion and, in particular, to eigenvalue problem (5).

J. Calkin (2) showed that the space F(H) of all finite rank operators on a Hilbert
space is the minimal and the space C(H) of all compact operators on a Hilbert space
is the maximal two - sided ideal of the space B(H) of all bounded operators on a
Hilbert space, that is, any two-sided ideal M(H) of the B(H) is contained in C(H)
and contains F(H); F(H)CM(H)CC(H).

In this paper we make clear the two-siced ideal M(H) of B(H) and investigate the
inclusion relations of various subspaces in B(H) in terms of the ideal structure.

Our major concepts are developed by three stage sequential processes; In section 2,
we summarize somewhat familiar with the rudiments of functional analysis which are
needed in the later section. In section 3, we discuss the ideals F(H) and C(H) of
B(H). Section 4 includes the ideals N(H) (the space of all nuclear operators) and S(H)
(the space of all Hilbert-Schmidt operators) of B(H). Finally we characterize the
ideals of B(H) as our conclusion.

2. Notations and Some general resuits

This section gives notations and some general results of functional analysis which are
needed in the later sections.

Assumming that we are familiar with these results, we summarize only some results
together with notations without proofs. The elementary details reffered to here can be
founded in the indicated references or ancther standard text on functional analysis.

Throughout this paper, H and Hi (i=1,2) denote separable Hilbert spaces over the
complex field C. A linear operator T is said to be bounded if the norm of T, (Tli=
supl ITxll D lxllS£1} < for x €D(T) (the domain of T). We denote by B(H,, H, the
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Banach space of all bounded linear operators T of H, into H,. In case H=H,=H, we
write B(H) in place of B(H,, H,).

The adjoint operator T* €B(H,, H,) of TEB(H,, H,) is determined by (x, T*y)=
(Tx, y) for all x€H,, and y€H,. If T*=T then T is called a self-adjoint operator
and if it commutes with its adjoint, i.e., if T*T=TT* then T is said to be normal.
An operator TE€B(H,, H,) is said to be of finite rank if its range R(T) is a finite-
dimensional subspace of H,.

The space of finite rank operators from H, into H, is denoted by F(H,, H,) and F(H)
=F(H, H).

An orerator TEB(H,, H,) is called compact if T(U) has compact closure in H, where
U is the unit ball of H,. Often it is convenient to use the equivalent definition which
asserts that T is compact if and only if, for each bounded sequence {xa{ in H,, there
exists a subsequence |z | and an element y €H, such that T(x»)-—y. Another equivalent
formulation is that the image, under T, of a bounded set in H is totally bounded in H.,.
We denote by C(H,, H,) the space of all compact operators in B(H,, H,) and write
C(H, H) as C(H). We S_ummarize the properties of F(H) and C(H) as follows;

Proposition 1 (1,4) (a) If lxal%, and lysls., are an orthonormal basis (ONB) of H,
and H, respectively and | @i CC, then every operator TEF(H,, H,) is represented by

Tznglan (', In>yn='§ anyn®i-;

T‘="Zlau(°, Vo) Tn= Z]anr,;@ﬁ'
- =

with rank (T)Sn.
(b) Every operator TE F(H,, H,) is bounded and compact.
(¢) If dimH< (dimH denotes the dimension of H), then every operator TE F(H,, H,)

is compact.

Proposition 2 (3,6) (a) An operator TE€ C(H,, H,)=Tx:>0 for every weak null-sequence
{xal from H,.

(b) An operator TE C(H,, H,) < there exists a sequence |Tn| of finite rank operators
from B(H,, H,) for which IiTn—TIil—0.

(¢) If {Tnl is a sequence of compact operators from B(H,, H,) and WTn—TI=0 for
some T€ B(H,, H,), then TEC(H,, H,).

(d) TEC(H,, H)eT*€C(H, H)eT*T&C(H,).

An operator T€ B(H) is called positive if (Tx, x)=20 for all x€H. We write T=20
if T is positive and T=S if S—T=0. If TEB(H) and T20, then there is a unique
S€ B(H) with S20 and §*=T. Thus if TEB(H), then |T\=/T T.

An operator UE B(H) is called an isometry if IUxl=llzll for all x€H. U is called
a partial isometry if U is an isometry when restricted to the closed subspace (Ker U)*
If T€B(H), then there is a partial isometry U such that T=U|T|. U is uniquely
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determind by the condition that Ker U~Ker T where Ker T and Ker U denote the kernel
of T and U respectively. Thus it follows that |T|=U*T=U"'T. This representation,
T-UiT| is called the polar decomposition of the operator T. Let lx, 5., by an ONB
(orthonormal basis) on H. Then for any positive operator TE€ B(H) we define tr(T) =

i‘. ‘xp, Tx, . The number tr(T) is called the trace of T and is independent of the ONB
n-=1

chosen. An operator TE€ B(H) is called nuclear if and only if trlT{=§‘(:xm [ Tlxny (0.
The set of all nuclear operators on H is denoted by N(H) and the norm of TEN(H) is
defined by |T!,=1tr|T). We can summarize the properties of N(H) and tr(T) as follows:
Proposition 3 (1,4,6) (a) Every TE€ N(H) is compacl.
(b) TENH) & X5.,4,7%°, where A,—~S(T) are the singular values (or s-numbers)
of T.

(¢c) Every operator TEF(H) is |l - Il,-dense in N(H).

(d) If T, SEC(H), then tr(T+S8)=Tr(T)+tr(S), tr(aT)=atr(T) for all a=0(€ER).
tr(UTU ') = tr(T) for any unitary operator U.

(e) If TEN(H) and S€ B(H), then tr(ST)=1+(TS).

An operator TE€ B(H) is called a Hilbert-Schmidt if and only if ¢ (T*T) (e, The
space of all Hilbert-Schmidt operators is denoted by S(H) and the Hilbert-Schmidt
norm, |Tl, is defined by ilTilz=();!lTx,i|’)_é_. Thus it follows that ||Ti|z=(tr(T‘T))%_,
TV=4T1,21Tl, 1T1,=1T*|,. We can summarize the elementary properties of S(H)
as follows:

Proposition 4 (1,3,6) (¢) Every TE€ S(H) is compact.

(b) TES(H)XL5., AL, (o, where A,=S/T) are the singular values (or s-numbers)

of T.
(¢) Every operator TEF(H) is | - ||,-dense in S(H)
(d) S(H) is not | - ll-closed.

3. The ideals F(H) and C(H) of B{H)

In this section we discuss the property of F(H) and C(H) in the context of the ideal
of B(H). From proposition 1 and 2 in the section 2, we see that F(H)C C(H) CB(H).
The fundamental property of the ideal in B(H) was given by J. Calkin (2) as follows:

Proposition 5 (2,4) Any two-sided ideal M(H) of B(H) is contained in C(H) and
contains F(H): F(H)CMH)GC(H), that is, F(H) is the minimael and C(H) the maximal
closed two-sided ideal of B(H).

The basic properties of F(H) are given in the following lemma:

Lemma 6. F(H) is the minimal two-sided % -ideal in B(H), that is,

(a) F(H) is a linear space

(b) If TEF(H), then T*EF(H).

(¢) If TEF(H) and SE€ B(H) then TSE F(H) and STE F(H).
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(d) F(H) is the minimal ideal in B(H).
proof. (a) If T, S€ F(H) then
(T+S8) (H)CT(H)+T(S).
The inclusion,
rank (T+S)Crank T+ rank S
implies that T+ 8§ is finite rank. Thus F(H) is a liner space.
(b) Let {x,} and {y,} be ONB’s of H and let {e,]/CC. From proposition 1 an operator

TE F(H) is represented by T=§‘d,y,®a?; with rank (T)=n. Thus the adjoint operator
T* of TEF(H) is represented by
T"‘=});Ia,x;®y;_

Thus we have T*€ F(H). For another method, see J. Weidman (6, pp.129).
(¢) If TEF(H) with rank (T)<n and S€ B(H), then from proposition 1

ST=J'L§Z‘0,<-, z,)Sy,= LSy, ®% € F(H)

TS=La (-, §%)y=Ly® %z € F(H),

giving (C). Alternatively the inclusion rank(TS)Crank(T) shows that F(H) is a left
ideal in B(H) and T* is in F(H) from above (b} which implies that S*T* is in F(H)
and hence that TS=(S*T*)* is in F(H).

(d) This follows from the proposition 5 or Gohberg and Krein(4, pp.66).

Therefore F(H) is the minimal two-sided % —ideal in B(H).

By arguments analogous to those we used for F(H) we can prove the following lemma;

Lemma 7 C(H) is the maximal closed two-sided * -ideal in B(H), that is,

(a) C(H) is a linear space.

(b) If TEC(H), then T*<€ C(H)

(c) If TEC(H) and S€ B(H), then TSE€ C(H) and STE C(H)

(d) C(H) is the maximal closed ideal in B(H)

Proof. (a) Let T’l, T,€C(H) and g, bEC. Then from proposition 2, if x,—0 in

H, then T,x,~0 and T,x,—0. Hence (aT,+bT,)x,~0. Thus C(H) is a linear space.

(b) This follows from proposition 2.(d).

(¢) We use the fact that T€ B(H) (, that is, x,~x implies Txz,~ Tx) is equivalent

to that xna—)’x(weakly convergent) implies Tx,,g Tx(weakly convergent). Now let
TEC(H) and SEC(H). '
If {x,t is a weak null-sequence in H, then the sequence {Sxz,| is also a weak null-
sequence. As TE€ C(H), then TSx,=20: hence TSE€ C(H). On the other hand if TE€ C(H),
then Tx,»0 for every weak null-sequence {x,| from H (see, proposition 2). Since S€
B(H) is continuous, we also have STx,—0, Therefore STE€ C(H).

(d) This follows from proposition 5 or Gohberg and Krein{4, pp.66-67).
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4. The ideals S(H) and N(H) in B(H)

In this section we discuss the ideals S(H) and N(H) in B(H).

By the definion or proposition 3 and 4, we see that N(H) CS(H), and that N(H) and
S(H) is not closed subset of C(H). We have the Properties of N(H) as follows.

Lemma 8 N(H) is a two-sided % -ideal in B(H), thatl is,

(a) N(H) is a linear space

(b) If TEN(H) and SE B(H), then TSE N(H) and STE N(H)

(¢) If TEN(H), then T*EN(H)

Proof. (a} Since |aT|=1{al|TI for a€C, N(H) is closed under scalar multiplication.

Now suppose that T, T,E€N(H). We wish to prove that T,+T,EN(H).
Let U,V and W be the partial isometries arising from the polar decomposition T,+T,=
UIT,+T,, T,=VIT,!, T,=W]|T,l. Then, for an ONBlx,! of H.

% (zn, T+ Talza) = 5 Gxn, UN(T\+ To)z)

N N
52;‘1 (xn, U*VIT | x0) | +§l| (xn, U*W I Ty lxp) |

However

iM=

N
1 G, UVIT |2) ISZH T, 1% VAU, - 1T 2l

1

N N
Sz [T, 1% V*UzlI?) - (LT, 12 zll%)E

N
Thus, if we can show 21 IT,I'% V*Uzx,ll?) - =irIT\|, we can
n-t
N
n§1<xn‘ IT1+TzIIn>§lTIT1|+tT|T2[<OO

and thus T+ T,€EN(H). To show Z_:‘ll | T, | 2 V*UxI? =trIT,|, we need only prove that
tr(U*VIT, I V*U)Stir| T, 1.

Picking an ONB, |x,! with each z, in KerU or (KerU)" we see that tr(U*(VIT,IV*)U)
Zir(VIT,|V*). Similarly, picking an ONB, ly,}, with each y, in Ker V* or (Ker V*)J’
we find tr(VIT,IV*)Sir|T,|. Alternatively, it follows from proposition 3(d) that the
sum of two nuclear operators is a nuclear operator. Thus N(H) is a linear space.

(b) Since each TE€ B(H) can be written as a linear combination of unitary operators,
we need only show that T€ N(H) implies UTEN(H) and TUEN(H) if U is unitary. But
[UT|=|T|and |TU|I=U"'ITIU, so by part(e) of proposition 3, TU and UT are in N(H).

(c) Let T=UIT!| and T*=V|T*| be the polar decomposition of T and T* Then [T*|
=V*ITIU* If TENH), then [T|EN(H), so by part (b) above [T*| € N(H) and T*=
VIT*"IENH).

By argument analogous to those we used for N(H) we also have the following lemma;

Lemma 9 S(H) is the two-sided ¥ -ideal in B(H), that is,
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(a) S(H) is a linear space
(b) If TE S(H), then T*€ S(H)
(¢) If TES(H) and SE B(H), then TSE€ S(H) and STE S(H).
(d) S(H)CC(H). '
Proof. (a) Let T,, T,€ S(H) and a, BE€C, and let {x,| be a CONB (complete

orthonormal base) on H. Then
nfjlllaT,:r,,+ BTz, S 25 (1 al*IT -+ | B IT iz, %) (o0,

Thus @T,+ 8T, is a Hilbert- Schmidt operator, and hence S(H) is a linear space.
(b) Let TES(H, H,) and let |x,] be an ONB of H, such that

':ZIIIT:c,.H’(OO. If {y,! is an arbitrary ONB of H,, then

glnrz,.ne mf_“ E; (ym T 2= i 2:1 (En T*ya) 1'= ZIT*y (oo,

Thus T* is a Hilbert- Schmidt operator.
(¢) Let TES(H) and S€ B(H), and let |{x,! be an ONB of H. Then

illSTx,,ll’éIISII’i‘IITx,,II’@O.

Thus STES(H). On the other hand, from the above (b), T* is in S(H), which implies
that S*T* is in S(H) and hence that TS=(S*T*)* is in S(H).
(d) Let {x,l and |y,} be CONB of H. Then for x€H,

ITal? =T 1(T, ya) 1'= £ 1 (2, T*y0) 1*
smt:11|u||=||T*y,,||’=nan)::]nTx,,nz
S NTIS( DTz F
The x=§l(x, xn)xy is strongly convergent, and hence we may be written by
T:t=§l(x, xn) Tx, (strongly convergent). If we define the operater T, as T,,,:c=’§l(x, )
Tx.(x€H), then §‘||(T—-T,,.)x,.ll’= ZEHTx,.II’(QO

n=m+1

Thus T—Ta€S(H) and IT—TallS( 5 ITx )} and thus

N=m+1

# — lim To= T(uniformly convergent) It follows from proposition 1 that T€ C(H)

Mmoo
5. Conclusion

In this paper we start with the fact that F(H) CM(H) CC(H), and then we have
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lemma 6,7,8 and 9.

From these results we can characterize the fact that if the operator T€ B(H) belongs
to a two-sided ideal of B(H), then the operator T* also belong to this ideal; that is,
every two-sided ideal in B(H) is selfadjoint, in other words, two-sided % -ideal. We
also can cite the fact that the ideal C(H) is the only closed two-sided *-ideal of
B(H).

If we synthesize our results on the properties of F(H), N(H), S(H) and C(H), We
have the following theorem as conclusion. )

Theorem 10. (a) F(H) CN(H CS(H) CC(H) CB(H)

(b) F(H), N(H), S(H), and C(H) are all the two sided % -ideal of B(H)

(c) F(H) is the minimal two-sided % -ideal and C(H) is the closed maximal two-sided

* -ideal of B(H).

Abstract : In this paper we discuss various subpaces of B(H), the space of bounded

linear operators in a Hilbert space, and then investigate the inclusion relations of these

subspaces in terms of the ideal structure of B(H).
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