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I. Introduction

In the Previons paper [1], Bartoszynski got some interesting, important results concerning
with the rabies virus model. Buhler and Keller [3] also, in their short paper, claimed that there
is a one to one correspondence between the Bartoszynski’s rabies virus model process for the
development of rabies in the human organism and the continuous state branching process{CB-
process).

The continuous state branching processes are studied first by M, Jirina in 1958, and developed
by many probabilities. In 1969, Puri [6] claimed that the discrete state branching processes can
be applied in the models of self-reproducing entities such as bacteria or viruses, Also, Pakes
and Trajstan [5] established the Bartoszynski process(B-process) as a continuous state branching
process and got many limit theorems for B-process of the rabies model, Thus we can image
that the properties of continuous state branching processes can also be applied in B-process and
will use some results of them,

In this paper, we will give some results about the Bartoszynski’s virus model containing the
analysis of stochastic models of development of rabies within the human organism. The main
objective of this model is to assess the risk of developing the disease in absense of vaccination,
The model of this B-process {X(¢) ; £=0} is same as the model in [2]. Thus the hypothesis
of introduction section of [2] are hold. Let K(t) be the number of jumps of this process as
the damage process which denote the number of destroied cells untill time t in the central nurvous
system. Also, let

u(t)=§, X(r) dr, 720
and w(t) denotes the disappeared volum or quantity of virus untill time ¢,

In section I, we will meet the elementary properties of the processes X(¢) #(t), w(¢) and
k(t) such as the moments and the cumulant generating functions, In section I, we will get
some limit properties of the cumulant generating functions of the above random variables and
the induced random variables, We also get some results concerning with the probability that
the disease will not develop at all and with the measure of the total damage sustained by the
host.
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II. Preliminaries

Let ¥>0 be the initial number or quantity of viruses at #=0 and T, <T,<:-- be the moments
when the 1st, 2nd, +-* cells of central nerval system break and spill its contents, ravies viruses,
Also, assume that Y;, Y+ represent the magnitudes of contents which is spilled out when the
cells of spinal cord or brain are break, Then the sequence of random vectors

(0, x), (Tx, Y1), (Tz, Yz),

can generate the Bartoszynski virus model process(B-process)

{X(2) . t=20} as

X(t) = -{xe‘“ for 0St<T
[X(Tn)+Yn] € for Tn{ T Tnu.
We can also define the auxiliary process Z(t) as

1 if no symptoms occur before t

Z(t)=
0 otherwise,
It will be assume that Z(0)=1 ; we now put Z=inf{t] Z(¢)=0},
So that Z is the latency period.
Because the B-process {X(Z) ; 220} can be regard as a kind of the continuous state branching
process, we can use the branching property and get the function ¢,(Z, s) which satisfies
E(e—SX®| X(0)=x)= xf1t, ®
Where

2 it $)=0( (1, 9)), 4,00, 5)=s,
if the regular condition ‘

;l-i.m., ﬂ'f—):i- =P(s) exists for s=0
is assumed. On the other hand, the integration yields
sl ) id =t
| TP

Thus we defind the cumulant generating Function of the B-process {X(f) ; =0} as
Bi(t, s) == log (™| X(0)—¥), s20.
From the elemnetary properties of the branching process, we can get the mean and the variance

of the random variable {X(#) 1X(0)=x} as
EX(#) 1X(0)=xex;

—_ ¢,” (1, 0+) . '
T ele—n) ¢ len 1), if a0,

Where a=¥(0+), A=lin 3 E{(X(£)—1)% X(0)=1
When X(0)=1, we will define the total toxin process by #(#)= f; K(r)dr, r=0.
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Here, #(¢) can be regard as 2 measure of the total amount of toxins during time interval (0,
1), and from the hypothesis of the B-process (cf. [2]), we see that the probability of no response
during (0, ¢] is given by exp{—2a S; X(r:w) d7).
If we define the cumblant generating function of #(f)'as ¢,(¢, s)=—log E(e™=Y?), §=0.
then we can meet many rsults concerning #(¢) in [4] and [6]. From the fact
E(u(#))=E {, X(r) d
= S; E(X(7)dr

We also have the results
e4t—1 -

E(w(t))= { «
¢, if a=0.
From the Puri’s paper [6]. we can get also the variance of the random variable u(t),
A - v
¢ =5 [(—1)—2ate™], if a0,
v(u(t))=3% [
£(l—a)
3

, if a0

h”(1) , if a=0,
Whete h(s) is the generating function of the discrete branching process and
A ()—-kQ)+T
H(1)—-1 :
From the above, if X(0)=1, we can also define the cured process {w(¢) : 220} which
denote the disappeared volum or quantity of the rabies virus during (0, t) and the cumulant

generating function of w(#) as #5(t, s)=—1log E(e™%V), s=0.

(61), Then we get the expectation_and the variance (cf, Puri ),

es—1
E(w(t))={ _-_e“—-l , if a=0,

L if a=0
eat_zateat.__ 1 1+20'teﬂ!‘ “"'e‘zm .. h”(l ) -— : t :
v(w(t))={ K@) T U—RF O et H1mET, ifako,

(1—a)t+h"(1)i1—'—,of')i | if a=0,

Let K(2) be the random variable of the number of jumps in (0, £), ie, K(t)=#{n=1:
Ta=f}.

Because K(#) denotes the nufnbet of distroied cells, we will call this process {K(2) ; 220} as
the damage proces,s and also we can define the cumulant generating function of K(#) as

k(t, )=—L 105 B(s%9) X(0)=1), 051,
From the Puri’s paper [6] and the Pakes and Trajstman’s paper [5], we get the expactation
and the variance of K(¢), Indeed, if we define the function

B s, Sz)=*‘*'i—log E(e XOSKY] X(0)=x), 5,20, Qs 1/ e (1)
and letG (2, 5y, $))=1—p"B(¢, sy, 5,),
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Where p=lim h(f, 0), then we get the relationB(Z, s, 5;)=p[1—G (¢, s, S,) 1.
From the branching property and comparing with the Equation (8) of Puri [6], we obtain the

representation,
G (¢, s, 32)=E[1“'% MOs O],

Where M(?) is 2 Markov branching process with offspring probability function f(s) and split
rate ¢, M(0)=1 (see [5]). Thus we get

B(t, 5, 5.)=p[1—E (1_% M g (2)
If we put §=p(1—z2) i. . 1—s,/ p=2 in the equation (1), then we get by (2),
E(e pAPXUg KDY (()) =% ) = BhpU-DS; d=px p[ —xp(1 —E{gMVs, W0} ) J .................. (3)

Put z=1, i.e, =0, £(1—2)=0 in (3), then
E(s;*® X(0)=x)=exp[ —xp(1—-E{s,"*}) ].

From this equation, we get
d_p,(sx0 X(0)=%)=E(k(£)sK®"] X(0)=x)| s=x

ds
=E(k(¢)! x(0)=x)
=eXp(—xp)exp(XpE(s¥?®) )xpE(w(t)s"®)|s=1
=xpE(w(t)).
But we have got the expectation of w(t) already, thus we get
en—1 .
E(k($)] X(0)=x)= [P e=y » I «¥0,
xXpt, if a=(,
We also guess the variance of k(¢) from the Puri’s paper [6].
v(k(2))=%pE(w(t))
= { % x[r(% V(e —1—2ate)+ (@ p)(aten—e=+1)+e —1], if a0,

(-t A= 4 (1 —ayt1], if a=o,
where 7=E(Y?%).

[I. Some Limit Theorems

Let ¥(¢, B, s, S;) denote the Laplace transformation of the process {X(2¢), u(¢), w(t) ; ¢
=0} defined by

Y(t, 5, S S3)=—log E(e™XPg 8UWesWO | Y ()=1) for 0=s, S, S3=1. Then from
the branching property of the random variable X(£), we have the semigroup

Y (4T, S5, S5, S3)=Y(t, (T, s, Sy S3), Sz, Sa).
Letting 70, we have for all £,

n(sy $3)="Y(t, n(s; S3), Ss, S3),
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thus we get the nonnegative root for x of the equation

W(t, %, 55, 53)=%, ¥20,
Where t may have positive value and S, $3=0.

Theorem 1. For every fized (S, S, Ss), such that 8, S, 20, Im¥(t, s, s, s3) =q(s
2 S3/-

Proof. From the semigroup property W(¢+7, 8, S, S3)= ¥(f, ¥(7, 8, Sy, S3), S, S3),

and the concavity of this function ¥, we have that for every fixed ( §, Sy, S3) such that s,
Sy, $3=0 as t—>00, W(t, s, S; S3) 10(s;, S3)  and W(7, s, S, S5), ¥ (Sp, Ss) according as s
1<g(Sy, S3) or $)g(Ss, S3), respectively, Thus we get the result #

1f we define as the followings

Xt b _
R = gxm) SO~ B MO=

P (2, t, ty, Us)=-log B(eRPe 10 UMY,

then we get the relations

W(¢)

_— =
E(W() and for u,, %, u3=0,

w(t, E()?(lt)) , E(:(zt)) , E(uz;?t)) ), = o(t, #, #,, #;),and the similar properties of @ as
v,
From the propetties of the branching process, we can image that if R =0 a.5., then
lim s(¢)=s as., lim M(#)=M as.,
and also get the following in the continuous state,
Lemma 1. If <0 and P(xt%e at) <1, then
im B (t)=r = 0 as.,
If @>0 and there exisis a to such that BfX(t;)log X(l5)] < + 0o, then
E(R )= X0,
and there exists a to sreh that Efx(to)log x(to)] = + oo then
E(R)= (0)ie. R= 0 as.¢
Theorem 2. If a=0 or if a>0 and there exists a t, such that E[X(t;)log X(t,)] = + oo,
then
Mm @(t, w, ey, Us) = 7(ths, Us), where  ¥(tr, t45) =—log E(eVSe W),
Proof. From the Lemma |, we see that, in our case, #=0 4.5.. Thus
there exist 8. and w, and we get o(t, w, 1y, 203)—>7 (205, u3). ¥
Let N(f, ¥) be the probabiliny that disease does not occur up to time t, given be bite with
serverity X, Then we can denote as
N(tx) = p(z(t)=1| X(0)=%)= p(z>t X(0)=¥*),
and N(X) is read as the probability that the disease will not develop at all, given the initial value
X(0)=%, ie, N(x)=lim N(¢, x) =p(z=0c0 | X(0)=%)."
Let £) be the probabili'ty space for the process {X(¢):¢£=20}, then
its sample functions may be written as Xx(f,w), where X(0)=x. For a fixed w, the function
AXx(., w) is the intensity of transition from | to 0 of the process {z(¢)} (defined on another
probability space.) Thus by standard reasoning, we have

px(2(¢)-1] w)=px(no symptoms occur till #iw) =¢A bex(s,w)a's.
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and by integrating, we have
px(z(t)=1)= px(z>t)= N(tx) = E(e™ § Xx(s)ds.)
= E(¢Mu(t)] X(0)=x),

where A is Hypothesis I of [2].

From this relation, we have N(¥) = E(e'wl X(0)=x),
where # = lim u(£).

Lemma 2. For fixed to€ (0, o), we have

P, 8) = —;Z‘ﬁ 8 __X(Ito) log E(e™Y Fy),

where Fuo= o{X(u)l0Su=<t,}.
Proof. See [4].
Theorm 3. For each to€ (0, o), if we let N=N(1), then
u(t,) 1
N= A+ N
X1,y * Xty W)
where N’ = Efexp(Au)| fy). e
Proof. From the relation, N(¥) = E(¢” IX(O)_x)
we get @2(00, A) = —log N,
u(to) 1
A
X(tk) T X(ta)
Theorem 4. If K is the total number of jumps of the B-process, then we get
E(k) = { , if <0
\ oo, if a20.

Thus, since K can be interpreted as a measure of the total damage sustained by the host, we

log N = log E(e'Au}Fw). 4

can image that how much damage have the host when he is bitten by the rabid animals,
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