Effect of Alkali Promoter in CO Hydrogenation Using Co/NaY Catalyst

Co/NaY 촉매를 이용한 CO 수소화 반응에 있어서 알칼리 첨가제의효과

  • Myong-Mo Sung (Korea Research Institute of Chemical Technology) ;
  • Min-Young Youn (Korea Research Institute of Chemical Technology) ;
  • Yunsoo Kim (Korea Research Institute of Chemical Technology) ;
  • Hang Nam Paik (Korea Research Institute of Chemical Technology)
  • Published : 1988.10.20

Abstract

The effects of alkali promoters on the activity and selectivity of Co/NaY catalyst have been investigated. The catalysts were prepared by impregnating NaY with aqueous solutions of alkali compounds and a benzene solution of $Co_2(CO)_8$. Hydrocarbon synthesis was studied in a flow reactor under the reaction conditions : temperature = 200∼250$^{\circ}C$, space velocity = 120∼$160hr^{-1}$, pressure = 1 atm, $H_2$/CO = 1. As the basicity of alkali promoter increases, the olefin selectivity, probability of chain growth, and CO$_2$ formation increase and methane formation decreases. The activity of CO hydrogenation increases with the pH of alkali solutions.

본 연구에서는 알칼리화합물의 첨가가 Co/NaY촉매의 반응성과 선택도에 미치는 영향을 관찰하였다. 촉매는 제올라이트 NaY에 알칼리화합물을 첨가한 후 $Co_2(CO)_8$을 담지시켜 제조하였고, 온도 = 200∼$250^{\circ}C$, GHSV = 120∼$160hr^{-1}$, 압력 = 1atm, $H_2$/CO = 1 에서 반응하였다. 첨가된 알칼리이온의 염기도가 클수록 올레핀선택도, probability of chain growth(${\alpha}$), $CO_2$의 생성율은 증가하고 메탄의 생성율은 감소하였으며, 알칼리용액의 염기도가 클수록 반응활성은 증가하였다.

Keywords

References

  1. C.R. Acad. Sci. v.134 P. Sabatier;J.B. Senderens
  2. Chem. Ber. v.56 F. Fischer;H. Tropsch
  3. Science v.211 R.L. Pruett
  4. J. Mol. Catal. v.17 J. Fadlbe;C.D. Frohning
  5. C&EN v.26 J. Haggin
  6. Hydrocarbon Processing v.61 D.L. King;K.K. Ushiba;T.E. White. Jr.
  7. J. Catal. v.77 R.D. Gonzalez;H. Miura
  8. J. Catal. v.97 H. Praliaud;J.A. Dalmon;C. Microdatos;G.A. Martin
  9. J. Catal. v.63 G.B. McVicker;M.A. Vannice
  10. J.C.S. Chem. Comm. v.180 H.H. Nijs;P.A. Jacobs;J.D. Uytterhoeven
  11. J. Catal. v.15 M.E. Dry;T. Shingles;L.T. Boshoff;G.J. Oosthuizen
  12. J. Mol. Catal. v.13 D. Ballivet-Tkatchenko;I. Tkatchenko
  13. J. Catal. v.59 R. T. K. Baker;E.B. Prestridge;R.L. Garten
  14. J. Catal. v.83 Y.W. Chen;H.T. Wang;J.G. Goodwin, Jr.
  15. Catalysis by Zeolite P.A. Jacobs
  16. J. Catal. v.77 S. Novak;R.J. Madon;H. Suhl
  17. J. Catal. v.66 H.H. Nijs;P.A. Jacobs
  18. J. Catal. v.56 D.J. Dwyer;G.A. Somorjai
  19. J. Phys. Chem. v.90 V.K. Jones;L.R. Neubauer;C.H. Bartholomew
  20. J. Chem. Soc. Chem. Commum. v.93 I.R. Leith
  21. $C_1$. Mol. Chem. v.1 A. L. Lapidus;M. M. Saveler;M. V. Tsapkina
  22. J. Catal. v.91 I.R. Leith
  23. J. Catal. v.101 D.G. Blackmond;J.A. William;S. Keraoui;D.S. Blazewick
  24. Chem. Phys. Lett. v.150 G. Ertl;M. Weiss;S.B. Lee
  25. Surface Sci. v.63 R.W. Joyer
  26. Surface Sci. v.41 H. Conrad;G. Ertl;E.E. Latta
  27. $C_1$. Mol. Chem. v.1 R. Snel
  28. $C_1$. Mol. Chem. v.1 H. Schulz
  29. J. Catal v.76 Y. Amenomiya;G. Plizier