Nucleophilic Substitution Reactions of Benzyl Halides with Pyridines in MeOH-MeCN Mixtures

MeOH-MeCN 혼합용매계에서 할로겐화 벤질과 피리딘 사이의 친핵성 치환반응

  • 송호봉 (경기대학교 이과대학 화학과) ;
  • 이익춘 (인하대학교 이과대학 화학과)
  • Published : 1988.10.20

Abstract

Kinetic studies for the nucleophilic substitution reactions of benzyl halides(para-substituted benzyl bromides and benzyliodide) with substituted pyridines in MeOH-MeCN mixtures have been carried out in order to elucidate the reaction mechanism. Cross interaction coefficient, ${\rho}_{XY}$ values suggested that the reactions between benzylhalides and substituted pyridines exhibit an dissocitive $S_N$2 mechanism. Hammett (${\rho}_X$, ${\rho}_Y$), Br${\o}$nsted ${\beta}_N$ and solvatochromic correlation coefficient a, s, a/s values were illustrated. Kinetic results were compared between potential energy surface model and quantum mechanical model. The quantum mechanical approach showed to be consistent with kinetic results.

메탄올-아세토니트릴 혼합 용매계에서 할로겐화 벤질(파라 치환된 브롬화 벤질과 요오드화 벤질)과 피리딘 사이의 친핵성 치환반응을 속도론적으로 연구하여 반응메카니즘을 밝혔다. 치환기 상호 작용 계수 ${\rho}_{XY}$값으로 부터 할로겐화 벤질과 피리딘 사이의 반응은 전이 상태에서 dissociative S$_N$2 메카니즘으로 진행되고 있음을 알 수 있었다. Hammett ${\rho}$(${\rho}_X$, ${\rho}_Y$) 값, Br${\o}$nsted ${\beta}_N$값, 분광 용매화 관계식의 계수 a, s 및 a/s 값을 이용하여 비교하였다. PES 모형과 QM 모형의 분석결과 QM 모형 해석에 잘 적용 됨을 알수 있었다.

Keywords

References

  1. J. Am. Chem. v.42 F.P. Ballistreri;E. Maccarone;G. Mussumarra;G.A. Tomaselli
  2. J. Am. Chem. Soc. v.101 P.R. Young;W.P. Jencks
  3. J. Am. Chem. Soc. v.103 A. Pross;S.S. Shaik
  4. Chem. Rev. v.85 W.P. Jencks
  5. Can. J. Chem. v.60 K.C. Westaway;Z. Waszczylo
  6. J. Korean Chem. Soc. v.28 S.D. Yoh;I.H. Park
  7. J. Am. Chem. Soc. v.94 P.E. Peterson;F. J. Waller
  8. J. Am. Chem. Soc. v.90 E.C.F. Ko;A.J. Parker
  9. Tetrahedron v.31 A. Arcoria;E. Maccarone;G. Musumara;G.A. tomaselli
  10. J. Am. Chem. Soc. v.100 V.P. Vitullo;J. Grabowski;S. Sridharan
  11. J. Am. Chem. Soc. v.101 J.M. Harris;S.G. shafer;J.R. Moffet;A.R. Becker
  12. Tetrahedron v.39 I. Lee;I.S. Koo
  13. Bull. Korean Chem Soc. v.4 I. Lee;S.C. Sohn;B.C. lee;H.B. Song
  14. Bull. Korean Chem Soc. v.2 I. Lee;I.S. Koo;H.K. Kang
  15. J. Korean Chem. Soc. v.28 H.B. Song;B.C. Lee
  16. Prog. Phys. Org. Chem. v.13 M.J. Kammelt;J.L.M. Abboud;R.W. Tafr
  17. Tetrahedron Lett. v.23 I. Lee;N.I. Kim;S.C. Sohn
  18. The Hammett Equation C.D. Johnson
  19. Bull. Korean Chem. v.7 I. Lee;C.H. Song
  20. J. Chem. Soc., Chem. Commun. I. Lee;S.C. Sohn
  21. Bull. Korean Chem. soc. v.8 I. Lee
  22. J. Chem. Soc,, Chem. Commun. I. Lee;H.Y. Kim;H.K. Kang;W.H. Lee
  23. J. Am. Chem. Soc. v.109 I. Lee;H.K. Kang;W.H. Lee
  24. Tetrahedron Lett. v.28 I. Lee;H.K. Kang
  25. J. Am. Chem. Soc. v.106 J-E. Dubois;M-F. Ruase;A. Argile
  26. J. Am. Chem. Soc. v.67 D.G. leis;B.C. Currans
  27. Phil. Mag. v.2 E.A. Guggenheim
  28. Physical Organic Chemistry L.P. Hammett
  29. J. Phys. Chem. v.108 J.N. Bronsted;K.J. Peaderson
  30. Introdution to Physical Organic Chemistry R.D. Gilliom
  31. The PMO Theory of Organic Chemistry M.J.S. Dewar;R.C. Dougherty
  32. J. Chem. Soc., (B) R.A. More O' Ferral
  33. J. Am. Chem. Soc. v.77 G.S. Hammond
  34. J. Am. Chem. Soc. v.89 E.R. Thornton
  35. Bull. Korean Chem. Soc. v.7 I. Lee;H.S. Seo
  36. Mechanism and Theory in Organistry T.H. Lowry;K.S. Richardson