Kinetics for Mononuclear Heterocyclic Rearrangement of N-(5-phenyl-1,2,4-oxadiazol-3-yl)-N'-arylformamidine (I)

N-(5-phenyl-1,2,4-Oxadiazol-3-yl)-N'-arylformamidine의 Mononuclear Heterocyclic Rearrangement반응에 대한 반응속도론 (제1보)

  • Jung Ui Hwang (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Jong Jae Chung (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Young Zoo Youn (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • 황정의 (경북대학교 자연과학대학 화학과) ;
  • 정종재 (경북대학교 자연과학대학 화학과) ;
  • 윤영주 (경북대학교 자연과학대학 화학과)
  • Published : 1988.08.20

Abstract

Reaction rates for mononuclear heterocyclic rearrangement of N-(5-phenyl-1,2,4-oxadiazol-3-yl)-N'-arylformamidines into 3-acylamino-1-aryl-1,2,4-triazoles were determined spectrophotometrically in dioxane/water (50 : 50, v/v). There are two different reaction paths according to pH. One is pH-independent path, the other is pH-dependent one. In pH-independent path, the result of substituent effect by IYT equation show that N-H bond breaking as well as new N-N bond formation controls the reaction rate. In pH-dependent path, concave-upward Hammett plot was observed. It can be concluded that new N-N bond formation is more advanced than N-H bond breaking in transition state for electron-donating substituents, but N-H bond breaking is more advanced than new N-N bond formation for electron-withdrawing substituents.

Dioxane/water (50 : 50, v/v) 용매 중에서 N-(5-phenyl-1,2,4-oxadiazol-3-yl)-N'-arylformamidine의 mononuclear heterocyclic rearrangement반응에 대한 속도를 분광광도법으로 측정하였다. pH에 따라 두가지의 다른 반응경로, 즉 pH에 무관한 경로와 pH에 의존하는 경로가 있음을 알았다. pH에 무관한 경로에서는 치환기효과를 IYT식으로 해석한 결과 질소-질소 결합의 형성이 우세하지만 질소-수소 결합도 약간 절단된 전이상태를 가진다고 결론지을 수 있었다. 한편 pH에 의존하는 경로에서는 위로 오목한 Hammett plot를 나타냈으며, 이는 전이상태에서 전자를 미는 치환기의 경우에는 질소-질소 결합의 형성이 질소-수소 결합의 절단보다 진전되어 있고 전자를 당기는 치환기의 경우에는 질소-수소 결합의 절단이 질소-질소 결합의 형성보다는 약간 더 진전되어 있기 때문으로 결론지을 수 있었다.

Keywords

References

  1. Gazz. Chim. Ital. v.53 G. Ponzio;L. Avogadro
  2. Gazz. Chim. Ital. v.53 G. Ponzio;G. Ruggeri
  3. Gazz. Chim. Ital. v.65 P. Gramantieri
  4. J. Chem. Soc. (C) A.J. Boulton;A.R. Katritzky;A. Majid Hamid
  5. Tetrahedron v.20 H. Kano;E. Yamazaki
  6. J. Chem. Soc. (D) v.14 M. Ruccia;N. Vivona
  7. J. Heterocyclic Chem. v.12 N. Vivona;M. Ruccia;G. Cusmano;M.L. Marino;D. Spinelli
  8. J. Heterocyclic Chem. v.16 N. Vivona;G. Cusmano;G. Macaluso
  9. J. Chem. Soc., Perkin Trans. I M. Ruccia;N. Vivona;G. Cusmano;M. Macaluso
  10. Bull. Chem. Soc. Jap. v.43 Mamoru Kamiya
  11. Bull. Chem. Soc. Jap. v.44 Tadashi Sasaki;Toshiyuki Yoshioka;Yasuyuki Suzuki
  12. Tetrahedron v.30 M. Ruccia;N. Vivona;G, Cusmano
  13. J. Heterocyclic Chem. v.12 N. Vivona;G. Cusmano;M. Ruccia;D.Spinelli
  14. J. Chem. Soc., Perkin Trans. I N. Vivona;G. Cusmano;G. Macaluso
  15. J. Heterocyclic Chem. v.20 N. Vivona;G. Macaluso;G. Cusmano
  16. J. Heterocyclic Chem. v.8 M. Ruccia;N. Vivona;G. Cusmano
  17. J. Org. Chem. v.18 P. Adams;D.W. Kaiser;G.A. Peters
  18. Theory of Rate Process S. Glasstone;K. Laidler;H. Eyring
  19. Comprehensive Heterocyclic Compound Chemistry v.6 Katritzky;Lees
  20. J. Chem. Soc., Perkin Trans. I N. Vivona;G. Macaluso;G. Cusmano;V. Frenna
  21. Organic Chemistry Alan S. Winglove;Robert L. Caret
  22. Advanced Organic Chemistry Francis A. Carey;Richard J. Sundberg
  23. J. Org. Chem. v.38 A. Arcoria;S. Fisichella;G. Scarlata;D. Sciotto
  24. J. Org. Chem. v.41 D. Spinelli;G. Consiglio;R. Noto;V. Frenna
  25. Bull. Chem. Soc. Jap. v.32 Y. Tsuno;T. Ibata;Y. Yukawa
  26. Bull. Chem. Soc. Jap. v.39 Y. Yukawa;Y. Tsuno;M. Sawada
  27. Bull. Chem. Soc. Jap. v.45 Y. Yukawa;Y. Tsuno;M. Sawada
  28. J. Amer. Chem. Soc. v.95 B.M. Wepster
  29. J. Amer. Chem. Soc. v.95 A.J. Hoefnagel;B.M. Wepster
  30. J. Chem. Educ. v.48 no.2 James O. Schreck