Theoretical Studies of Hydrogen Bonded Dimers AM1 Study of Hydrogen-Bonding Energies of MeOH-solvent Binary Systems

水素結合 이합체에 關한 理論的인 硏究, 메탄올-溶妹 이성분계에 대한 水素結合 에너지의 AM1 的 硏究

  • 김시준 (漢陽大學校 自然科學大學 化學科) ;
  • 박명옥 (漢陽大學校 自然科學大學 化學科)
  • Published : 1988.06.20

Abstract

The solvent effects of MeOH-solvent dimers were studied via AM1 Hamiltonian and supermolecule methods. Methanol, ethanol, acetone, dimethylsulfoxide, N,N-dimethylformamide, tetrahydrofuran, dioxane, and acetonitrile were considered as solvent molecules. Optimized geometries, electron densities, molecular energies, and hydrogen-bonding energies of monomers and dimers were calculated. We found that the stabilization energies contributed to the hydrogen-bonding were decreased in the order of dimethylsulfoxide > ethanol > N,N-dimethylformamide > acetone > methanol > tatrahydrofuran > dioxane > acetonitrile, and this order was explained by using the change of electron density and energy partition functions.

Methanol, ethanol, acetone, dimethylsulfoxide, N,N-dimethylformamide, tetrahydrofuran, dioxane, 및 acetonitrile의 8가지 분자에 대한 용매효과를 고찰할 목적으로 메탄올을 양성자로 하고, 8가지 분자를 양성자 받게로 하여, 이들 이합체를 AM1 Hamiltonian법과 supermolecule법에 의해 monomer 및 dimer의 optimized geometry, electron density, molecular energy 및 hydrogen-bonding energy를 계산하였다. 그 결과로 각 dimer의 hydrogen-bonding에 기여하는 stabilization energy 순서는 dimethylsulfoxide > ethanol > N,N-dimethylformamide > acetone > methanol > tatrahydrofuran > dioxane > acetonitrile임을 알았으며 이 안정성의 순서를 electron density의 변화 및 energy partition의 결과로 설명하였다.

Keywords

References

  1. J. Am. Chem. Soc. v.85 A. Allerhand;P. von R. Sehleyer
  2. J. Chem. Phy. v.5 R. M. Badger;S. H. Bauer
  3. J. Chem. Soc. Perkin II M. J. Kamlet;M. E. Jones;J. L. Abboud;R. W. Taft
  4. J. Chem. Soc. Perkin II M. J. Kamlet;R. W. Taft
  5. Progress in Physical Organic Chemistry, ED v.13 M. J. Kamlet;J. L. Abboud;R. W. Taft.
  6. J. Am. Chem. Soc. v.97 P. Kollman;J. Mckelvey;A. Johnsson;S. Rothenberg
  7. Comput. J. v.2 Janet E. Del Bene
  8. Comput. J. v.2 Janet E. Del Bene
  9. Chem. Phys. Let. v.75 Y. C. Tse;M. D. Newton
  10. J. Quam. Chem. v.26 Ting-Hua Tang;Xiao-Yuan Fu
  11. J. Phy. Chem. v.38 Keiji Morokuma;Hiroshi Kato;Teijiro Yonezaya
  12. J. Am. Chem. Soc. G. Kolpman;P. Andreozzi;A. J. Hopfinger
  13. Thero. Chim. Acta. v.64 K. Ya. Burstein;A. N. ISAVE
  14. Proc. Nat. Acad. Sci. v.72 L. L. Shipman;A. W. Burgess;H. A. Scherga
  15. Proc. Nat. Acad. Sci. v.72 L. L. Shipman;A. W. Burgess;H. A. Scherga
  16. Bull. Korean Chem. Soc. v.2 Y. K. Kang;M. S. Jhon
  17. An AM1 Study on the Intrinsic Barrier Energies of Proton Transfers in $H^+(H_2O)_n:n=2~11$ Jae Yong Choi;Robert J. Cave;Ernest R. Davidson
  18. J. Am. Chem. v.107 M. J. S. Dewar; Eve G. Zoebisch;Eamonn F. Healy;James I. P. Stewart
  19. Semi-empirical Methods of Quantum Chemistry Joanna Sadlej
  20. Theoretical Studies of Hydrogen Bonded Dimers. Charge Distributions and Hydrogen Bond Energies of MeOH-solvent Binary System Shi Choon Kim;Byong Hyen Choi
  21. Kinetic Studies on Solvolysis of 1-Adamantyl Derivatives in MeOH-DMSO Mixtures Shi Choon Kim;Young Ju Kim