
Facile Conversion of Carboxamides to Nitriles with 1,1'-Sulfinylbis-1,2,4-triazole under Mild Conditions

Sunggak Kim*, Sungbong Yang, and Jin Rai Cho

Department of Chemistry, Korea Advanced Institute of Science and Technology, Seoul 130-012 Received April 18, 1988

The conversion of carboxamides to nitriles is a wellknown reaction and a number of methods for carrying out such conversion have been reported. This reaction can be generally carried out with various dehydrating agents. They include thionyl chloride,¹ phosphorous pentoxide,² cyanuric chloride,³ aluminum chloride,⁴ trifluoroacetic anhydride,⁵ and diphosgene.⁶ However, each method often involves heating and/or acidic conditions which may not be useful to complex molecules.

In connection with our research program toward the development of new condensing agents, we have reported that di-2-pyridyl sulfite is very effective for the conversion of aromatic carboxamides into the corresponding nitriles under extremely mild conditions.⁷ However, this method does not work with aliphatic carboxamides. We wish to report that 1, 1 '-sulfinylbis-1,2,4-triazole is very effective for a facile conversion of carboxamides into nitriles under mild conditions.

1,1'-Sulfinylbis-1,2,4-triazole was easily prepared by the reaction of thionyl chloride with 2.0 equiv of 1,2,4-triazole and triethylamine in tetrahydrofuran at 0°C for I h. Since the reagent was hydrolyzed during aqueous workup or silica gel column chromatographic purification, it was used as a crude form after filtering off triethylamine hydrochloride and subsequent solvent removal. 1,1'-Sulfinylbis-1,2,4-triazole was obtained in 85-95% yields as a pale yellow solid and could be stored in a refrigerator for several weeks without little decomposition.

Table 1 shows some experimental results and illustrates the efficiency and applicability of the present method. The present method works well with aliphatic carboxamides. For instance, 2-ethylhexanamide was smoothly converted into 2ethylhexanonitrile with the reagent in methylene chloride at room temperature in 20 min, whereas the reaction required 4.5 h at reflux in benzene with thionyl chloride,¹ demonstrating the efficiency of the present method. Similarly, aromatic carboxamides were converted into the corresponding nitriles in high yields under similar conditions. However, p-nitrobenzamide was inert to the reagent and the starting material was recovered unchanged. Carboxamides containing acid-labile protective groups such as tetrahydropyranyl and t-butyldimethylsilvl ether were cleanly converted into the corresponding nitriles in high yields. Furthermore, another noteworthy feature of the present method includes the possible application in base-sensitive compounds because 1.2.4-triazole (pK_a) $(2.2)^9$ as the only other product formed is a very weak base. as compared with imidazole (pK_a 6.95).

Table 1. Preparation of	f Nitriles fro	m Carboxamides ^a
-------------------------	----------------	-----------------------------

amide RCONH ₂	time, min	isolated yield, % ^e RCN
CH ₃ (CH ₂)CONH ₂	10	89
CH3(CH2)3CH(CH2CH3)CONH2	20	93
Br(CH ₂) ₅ CONH ₂	10	86
c-C ₆ H ₁₁ CONH ₂ ^b	10	85
$C_6H_5CH = CHCONH_2$	20	90
C ₆ H ₅ CONH ₂	20	82
C ₆ H ₅ CH ₂ CONH ₂	20	80
p-CH ₃ -C ₆ H ₄ CONH ₂	20	91
p-CH3O-C6H4CONH2	20	99
p-O ₂ N-C ₆ H ₄ CONH ₂	180	0
THP-O(CH ₂) ₅ CONH ₂ ^c	20	80
TBDMS-O(CH ₂) ₅ CONH ₂ ^d	20	85

^a The reaction was carried out with 1.2 equiv of the reagent in methylene chloride at room temperature. ^b c-C₆H₁₁ refers to cyclohexyl group. ^c THP: tetrahydropyranyl. ^d TBDMS: t-butyldimethylsilyl. ^e Physical and spectral data of the products are in accord with reported values.

Finally, it is of interest to note that conversion of carboxamides to nitriles with 1,1'-sulfinylbisimidazole¹⁰ turned out to be not very effective. Thus, the reaction of octanamide with 2.0 equiv of 1,1'-sulfinylbisimidazole in methylene chloride at room temperature gave 25% of octanonitrile and 25% of starting material along with a significant amount of unidentified black solids and a samll amout of (9%) of octanoyl imidazole, resulting apparently from the transfer of imidazolyl group. Such phenomenon has been previously noted with N-chlorosulfinylimidazole.¹¹

References

- J. A. Krynitsky and H. W. Carhart, Org. Synth. Coll. Vol. IV, 436 (1963).
- 2. D. B. Reisner and E. C. Corning, ibid., 144 (1963).
- G. A. Olah, S. C. Narang, A. P. Fung, and B. G. B. Gupta, Synthesis 657 (1980).
- 4. M. Pesson, Bull. Soc. Chim. Fr., 2262 (1965).
- 5. F. Campagna, A. Carroti, and G. Casini, *Tetrahedron Lett.*, 1813 (1977).
- 6. K. Mai and G. Patil, *Tetrahedron Lett.*, 2203 (1986) and additional references are cited therein.
- 7. S. Kim and K. Y. Yi, Tetrahedron Lett., 1925 (1986).
- 8. mp 98-101 °C; NMR(CDCl₃) δ 8.20 (s, 1H), 9.10 (s, 1H).
- 9. D. Barton and W. K. Ollis, "Comprehensive Organic Chemistry", Vol. 4, p 365, Pergamon Ltd., 1979.
- H. A. Staab and K. Wendel, *Liebigs Ann. Chem.*, 694, 86 (1966).
- 11. M. Ogata and H. Matsumoto, Syn. Comm., 10, 733 (1980).