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Sigmatropic rearrangements are not confined to hydro­

gen atoms.1'2 Groups of nearly every type have b은en found to 

migrate. We report here semiempirical MO theoretical re­

sults on the course of such reactions involving migrating 

groups with lone pairs(F, OH, NH》SH, Q) and those which 

can migrate by eitheror p-type interactions (CH3, NO) bet­

ween l,3-2p orbitals of propenyl system. Four types of or­

bital interactions can be envisaged, since both a and p type 

can interact either suprafacially(s) or antarafacially(a) (Sche­

me 1).

f Determination of Reactivity by MO Theory (part 53).
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Table 1. Energy Barriers (； kcal / mol) and Types of 1,3- 
Slgmatropic Group Rearrangements Investigated in This Work

X
Method

Type0
AMI MNDO

ch3 106.51 123.37 sp
nh2 75.57 59.01 sp
OH 78.51 82.42 sa

CN 102.25 91.93 a <7
NO 68.32 53.26 Sp,S<7
F — 102.79 a a
Cl — 56.15 SCT
SH — 57.53 So

a s, a, a, and p denote suprafacial, antarafacial, sigma, and p-type in­
teractions respectively.

Obviously the <r type should result in retention whereas 

the p type should give inversion of configuration at the mi­

grating group. For neutral, four electron systems, only [1,3] 

a(r and [1,3] sp shifts are allowed according to the orbital sym­

metry rules,3 since normally the interactions are between 

propenyl-HOMO and migrating group-LUMO in term앙 of 

frontier orbital (FMO) theory.4

Our MNDO5,7 and AMI6,7 computations on the transition 

states for 1,3-shifts of eight groups have shown that (i) an- 

tarafacial processes are sterically unfavorable so that supra­

facial processes are favored for relatively large migrating 

groups ([l,3]sp for CH3 group), (ii) if a lone pair (nonbonding) 

level is high compared with the nonbonding level (HOMO) of 

the propenyl system, the lone pair participate in the migra­

tion so that six electrons are involved in the [1,3] shift, for 

which propenyl-LUMO and migrating group-HOMO interac­

tions become dominant and allowed processes change to

[1.3] s<t and [l,3]ap ([1,3]s(t for OH, Cl, and SH groups), and 

(iii) the activation energy barriers were found to decrease in 

난le order CH3>F>CN>OH>NH2>SH 숙 C1>NO (Table 1).

Normal four electron [l,3]a<7 process was followed only 

by CN group, while NO exhibited both aspects of a- and 

p-type interactions. Symmetry forbidden processes were 

found to take place for the two 6 electron systems involving 

NH2 and F groups; the former has a p-type lone pair so that it 

should proceed by [l,3]ap, but due to the large steric repul­

sion of two H atoms it was forced to go through [l,3Rp, whe­

reas the latter, having a rather low lying lone pair, gave

[1.3] a a i.e., behaved like a four electron system.

We conclude that in [lt3]group rearrangements antarafa- 

cial process is always sterically unfavorable and the lone 

pairs can participate in a and p type shifts providing two ex­

tra electrons to the system so that selection rules can also 

change.
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