Abstract
Formation of intermolecular charge-transfer complexes between 7,7,8,8-tetracyanoquinodimethane (TCNQ) and two different series of stilbene derivatives has been studied spectroscopically at $25^{\circ}$C in 1,2-dichloroethane. The compounds of Series I include stilbene and derivatives which have fused phenyl rings on one end of the central ethylene structure and a phenyl ring on the other end. The other Series, II, is comprised of stilbenes which have various para substituents on one of the two phenyl rings. The equilibrium constant, $K_c^{AD}$ and the molar extinction coefficient, ${\varepsilon}_{\lambda}^{AD}$, were determined using the Scott equation. The values of the charge-transfer transition frequency, ${\vu}_AD$ and $K_c{AD}$ correlated well respectively with the ionization potentials of the fused rings of Series Ⅰ or of the compounds of Series II and with the values of ${\sigma}_p$, the Hammett constants of the Series II substituents. trans-4-N,N-Dimethylaminostilbene and trans-4-nitrostilbene were found to be able to participate in electron transfer reaction with TCNQ forming the corresponding anion radical, TCNQ$^-$: