DOI QR코드

DOI QR Code

The Effects of Pressure, Temperature and Solvent Composition on Solvolysis of trans-[Co(N-eten)$_2Cl_2]^+$ in Water-t-butyl Alcohol Mixture

  • Park Yu Chul (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Cho Young Je (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • 박유철 (경북대학교 자연과학대학 화학과) ;
  • 조영제 (경북대학교 자연과학대학 화학과)
  • Published : 1988.02.20

Abstract

Rates of solvolysis of trans-[Co$(N-eten)_2Cl_2$]$^+$ have been investigated using spectrophotometric method at various pressures and temperatures in the mixtures of water with the t-butyl alcohol which possesses a high structure inducing capacity in water. The values of ${\Delta}V^{\neq}$ obtained from pressure effect on the rate constants were 2.55∼ 5.83 $cm^3mol^{-1}$. These values were discussed in terms of dissociative mechanism. Extrema found in the variation of ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$ with solvent composition correlated with extrema in the variation of the physical properties of the mixtures. The logarithms of rate constants correlated linearly with both Grunwald-Winstein parameter and the reciprocal of dielectric constant ($Ds^{-1}$). The gradient, m of Grunwald-Winstein plot for the trans-[Co$(N-eten)_2Cl_2$]$^+$ was 0.09, which is significantly lower than those for the other cobalt (Ⅲ)-dichloro complexes. It was suggested that the reaction is an Id mechanism with long extension of Co-Cl bond in the transition state, as found for the C-Cl bond in the transition state for the solvolysis of t-butyl chloride.

Keywords

References

  1. Visiting Professor
  2. Inorg. Chem. v.3 C. H. Langford
  3. J. Chem. Soc. Dalton M. Pribanic;M. Birus;D. Pavlovic;S. Asperger
  4. Pure Appl. Chem. v.41 U. Mayer
  5. Progr. Inorg. Chem. v.20 B. Perlmutter-Hayman
  6. J. Chem. Soc. Faraday I v.73 C. F. Wells
  7. J. Chem. Soc. Dalton C. N. Eigy;C. F. Wells
  8. J. Chem. Soc. Faraday I v.77 A. E. Eid;C. F. Wells
  9. J. Chem. Soc. Faraday I v.78 G. S. Groves;C. F. Wells
  10. J. Chem. Soc. Faraday I v.79 A. E. Eid;C. F. Wells
  11. J. Chem. Soc. Dalton I. M. Sidahmed;C. F. Wells
  12. J. Korean Chem. Soc. v.31 Y. Ch Park;Z. U. Bae;S. W. Kim
  13. Can. J. Chem. v.50 W. E. Jones;L. R. Carrey;T. W. Swaddle
  14. Can. J. Chem. v.50 W. E. Jones;T. W. Swaddle
  15. Pure Appl. Chem. v.38 D. R. Stranks
  16. High Temp-High Pressures v.7 H. Lentz;S. O. Oh
  17. Inorg. Chim. Acta v.19 D. A. Palmer;H. Kelm
  18. Inorg. Chim. Acta v.24 M. V. Twingy
  19. Inorg. Chem. v.16 D. A. Palmer;H. Kelm
  20. Inorg. Chim., Acta. v.34 G. A. Lawrance
  21. Aust. J. Chem. v.22 G. A. Lawrance;S. Suvachittanont
  22. Inorg. Chem. v.21 G. A. Lawrance
  23. Inorg. Chem. v.23 G. A. Lawrance;K. Schneider;R. V. Eldik
  24. Trans. Faraday Soc. v.52 K. J. Laidler;P. A. Landskroener
  25. J. Amer. Chem. Soc. v.70 E. Grunwald;S. Winstein
  26. J. Amer. Chem. Soc. v.75 F. Basolo
  27. J. Amer. Chem. Soc. v.75 R. G. Pearson;C. R. Boston;F. Basolo
  28. Bull. Chem. Soc. Jpn. v.22 K. Nakanish
  29. J. Chem. Soc. Faraday Trans 1. v.79 C. N. Elgy;C. F. Wells
  30. J. Chem. Soc. Faraday Trans 1. C. F. Wells
  31. Inorg. Chim. Acta. v.24 M. V. Twigg
  32. Inorg. Chim. Acta. v.32 G. A. Lawrance;S. Suvachittanont
  33. Can. J. Chem. v.51 G. Guastalla;T. W. Swaddle
  34. J. Chem. Soc. A. C. Brown;D. J. G. Ives
  35. J. Phys. Chem. v.74 T. L. Broadwater;R. L. Kay
  36. Chem. Rev. v.63 P. R. Wells
  37. Prog. Phys. Org. Chem. v.11 M. H. Abraham
  38. J. Am. Chem. Soc. v.91 R. E. Robertson;S. G. Sugamori