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1. Introduction

In estimating the wave forces acting on the
marine structures, knowledge on the mechanism
of the separated flow, the position of the
separation point, and structure of the wake flow
etc., is essential especially for high Keulegan-
Carpenter numbers. Up to now there has not
been a rational theory covering all these
features. The most reliable model for the
separated flow field is recently proposed by
Smith?. The key property in his model is that
near the separation point the so called triple-
deck theory can be applied. However, the model
is composed of lots of local structures which
makes the computation almost impossible. The
essential reason for this inaccessiblity comes
from the fact that the given obstacle is isolated
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in the uniform flow. As a matter of consequence
we reasonably build a substitutive flow problem
simpler than that of the isolated abstacle but
still preserving the local intrinsic nature for
instance near the separation point.

We consider a finite flat plate attached
normally to an infinite flat wall. The given
geometry is subject to the stagnation flow. Due
to the corner point, the boundary layer flow will
separate ahead of the corner. Numerical
solutions of the full Navier-Stokes equations to
this problem have been given by Suh? up to Re
(Reynolds number) of 2800. Re here is based on
the plate length, the reference velocity (the
velocity of the potential flow evaluated at the
leading edge of the plate) and the kinematic
viscosity of the fluid. His numerical results show
that on the wall of the recirculated region, the
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pressure is almost constant, and the distance
between the leading edge and the separation
point is represented by O (Re '?). Upon these
numerical results, extended study is made in this
paper concerning the possibility of the joint of
the free streamline theory and the triple deck
theory for the bondary layer separation (the so
called “reconciliation” problem?).

2. Inviscid Solution to the Problem Based
on the Free Streamline Theory

Fig. 1(a) shows the geometry in the z-plane
concerned in this problem. Note that the
dimensions are scaled by the lenght of the plate
C-B. The boundary of the domain of the
problem is D,-A~A’-D,. The governing equation
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Fig. 1 Physical and transform planes: (a) z-plane,
(b) w-plane, (¢} w-plane, and (d) § -plane

for this domain subject to inviscid and
irrotational flow, and the appropriate boundary
conditions based on the free streamline theory
are

iy =0 ()
¥ =0 along D,-A-A’-D, 2)
P ,

aé%: V, along A-A 3)

where ¥ is the stream function and 5 is
coordingat along the breakaway streamline (or
free streamline ; streamline of ¥ =0).

As the problem is two-dimensional, we utilize
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the complex function theory. For the complex
potential

w=¢ +iy 4)
we introduce as is usual the complex function @
such that

il dw gV
m—zlnvodz—-ﬁ +zan0 5)

where V = | %hg ! is the absolute velocity and
a1 SOV /B, .

8 =tan™'( EPNER ) is the angle that the

velocity vector makeswith the x-axis. Then the
mapping @ <> w can be obtained by the Schwarz
-Christoffel transformation :

dw

By introducing & defined as
__ %o 1.,

w=- (¢ + ¢ ) (N
(6) reduces to

w=—¢ln (~i§) (8)
Thus with %—Z‘;: Sg’ %% and (8), z can be
written from (5) as

=i the+ b ©

To attain w——2* as | z | »w {or | €] —0)
(this was the far field condition in the numerics
of Suh?), we must require that

bo= V! (10)
Evaluating at ¢ =/ gives a;
2
a= w% V,

Note that as a——1 (breakaway starting from
the leading edge),

Vo
Fig. 1 (a) to (d) show the four planes associated
with the transformations.

3. Prediction of the Position
of the Separation Point

We next find the asymptotic representation
for the shape of the free streamline near the
point A as is necessary in locating the
separation point using the triple deck theory

later. We set & =exp[i(c +%)] so that, near A,
o < <1. Then (9) becomes
an

Thus asymptotically for small o, the shape of

2= (a+ Voo ) 1 (5 Voot o)
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the free streamline takes the form

y=E Vo @t (12)
Now we change the variable xasx =—1+=«
and the constant @ as a= —1+5, so that s starts

from the leading edge and s, is the distance of
the breakway point from the leading edge. Then
by taking only the highest-order term, (12)
becomes
I A et (13)
Upon Smith?, for the local coordinates (X, Y),
the shape of the displacement far downstream of
the separation point required for the self-
consistent boundary layer separation should be
9
Ymre VA T (XX as XX, (14)
where A1 is the skin friction coefficient to be
given by the boundary layer calculation for the
upstream region (A =0.332 for the present case),

and € is “é—power of the appropriate Reynolds

number (Res), and @ is 0.44 critical for the sake
of the existence of the solution.

For the function (13) to be matched with (14),
(x,v) and # must be scaled by s, and V,
respectively. Thus by x=%X and y=sY, (12)
becomes

Y=Ly -1 (15)
Now by this scale
Res=-2Y0_ Vo _ e®
v

which is related to Ke used by Suh by the
following equation.

Res:%"—so Re (16)

where Re:i%(l. Then equality of (14) and (15)

makes
S =2 16/9 ) 2 VO'//QRC—MH:0.()379[\)‘,—1,9 a7

where the asymptotic value 1.5 for ¥} is used as
an approximation. However for the range of Re
used in Suh’s numerics, 5, is as a result too small
compared with s, the calculated distance of the
separation point from the leading edge. At Re—
2800, for instance, 0.0157 is obtained for s, while
0.13 for s.. Thus, in the following, we shall try
higher approximation by including into (17) (ss —
s) in the triple deck scale (O (Res™®). If we let
S be that amount in the triple deck scale, then®

Se— % =€® A4S =15081S Re 1 (18)
By addition of (17) and (18),
$s=0.0379Re™ "+ C Re~'» 19)

where C =15.0815.

4. Comparison of the Present Results
with the Numerical Results of
the Navier-Stokes Equations

Fig. 2 shows the streamlines obtained by the
present calculation in comparison with those
obtained by the finite difference calculation for
the Navier-Stokes equations?. It is seen, as a
whole, that as Re is increased the numerical
results tend to fit the free-steamline results. The
discrepency shown at low Ke especially in the
downstream region is due to the effect of the
boundary layer developed in that region near
the wall. The separating streamline (¢¥=0)
surely tends to approach the breakaway
streamline (¢ =0) as Re is increased. However,
the streamlines for  —0.1 obtained by the
numerics tend to fall apart toward the wall from
the corresponding ones by the theory ; this is
due to the tendency of the shear-layer developed
around the separating streamline to be thinned
as Re is increased causing the displacement
decreased. However, after all they shall come
close again pushed by the separating streamline
when Re is large enough. In an attempt to
compare qualitatively the shapes of the
shreamlines of ¥ =0, V, is adjusted such that
the free streamline fits the separating
streamline as shown in Fig. 3. Also shown is the
one calculated by Chernyshenko® via the
Batchelor’s model. It is seen that the separating
streamline exactly fits the free streamline
except in the small region near the reattachment
point. On the other hand, the line predicted by
the use of the Batchelor’s model anyhow never
seems to be able to fit the separating streamline.
Moreover, the Batchelor’s model permits only
one vortex in the domain, while the numerics
results in the two vortices”. Further,
noteworthy is that the numerics reveals and
almost constant pressure along the wall of the
recirculated region which is the basis of the free
streamline theory, while the Batchelor’s model
has significant variation in the wall pressure
distribution. Upon the above argument, it can be
stated that the free streamlinemodel is closer to
the nature than the Batchelor's model as far as
the numerical solutions for this problem of the
Navier-Stokes equations are concerned.

Finally, the validity of (19) for the location of
the separation point is pursued. In the work of
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(a) Hen200

(b} Hemg00
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Fig. 2 Streamlimes obtained by the free-streamline
model with the breakaway point at the
leading edge (—), and those by the Navier-
Stokes equations for (a) Re=200. (b) Re=
800, and (c) Re=12800(---)

Fig. 3 Streamlines obtained by the free-streamline

model with the breakaway point s =0.08
{(—), and those by the Navier-Stokes
equations for Re=2800 (---). Also shown is
the breakaway streamline obtained by
Chernyshenko (taken by Chernyshenko
1984) based on the Batchelor’s single-eddy
model (~ -« )

Suh?, the curve fitting was made in the log-log
plot of s, versus Re with the result

Se=1.7445 Re™17® (20)
as reproduced in Fig. 4. Actually the term of
Re ' on the right hand side of (19) is less
significant ‘than that of R¢~'® for the given
range of Re (100=Re=<2800); at Re=2800 the
first term gives 0.0157 while the second gives 0.
124 with € =1.7445, the first being 12.7 of the
second. Thus the second term dominant in (19) is
agreed to by the numerical results as far as the
exponent of Re is concerned. Since, the present
analysis casts the high possibility of successful
prediction of the flow structure near the
separation point by use of the interactive
houndary layer theory ; the key to the nethod
will be coupling of the boundary layer
calculation with the inviscid calculation based
on the free streamline theory in the body scale
specific for each problem concerned.

5. Conclusions

The free streamline theory is applied to
obtain the asymptotic flow structure at high
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Fig. 4 Numerical result for the distance of the
separation point from the leading edge of
the plate obtained by Suh® for the Navier-
Stokes equations. The constant C used in
plotting the line fitting the data points is 1.
7445

Reynolds number for two-dimensional corner
flow of 3 ungle which was studied numerically
by Suh. The streamlines by this theory agree
well with those of the numerical works of him.
The asymptotic shape of the free stream-line
near the breakaway point turns out to satisfy
the requirement of the triple deck theory. The
present analysis predicted the asymptotic
position of the separation point with the aid of
the result of the triple deck calculation. The

second order term in the equation, however, not
the first one fits with unknown constant the
numerical result for the given range of Re. This
study, thus, recommends the use of the
streamline model as the basis of the inviscid
calculation in the interative boundary layer
theory for the geometry treated here.

References

1) Smith, F.T., “A Structure for Laminar Flow
past a Bluff Body at High Reynolds
Number”, J.LF.M,, Vol. 155, pp. 175-192, 1985

2) Suh, Y.K,, “On Laminar Viscous Flow in a
Corner”, Ph.D. Dissertation, State
University of New York at Buffalo, N.Y,,
US.A., 1986

3) Smith, F.T., “Laminar Flow of an

=

Incompressible Fluid past a Bluff Body :
The Separation, Reattachment, Eddy
Properties and Drag”, J.F.M., Vol. 92, pp.
171-208, 1979

4) Smith, F.T., “The laminar Separation of an
Incompressible Fluid Streaming past a
Smooth Surface”, Proc. Roy. Soc. London.
A. 356, pp. 443-463, 1977

5) Chernyshenko, S.I., “Calculation of Low-
Viscosity Flows with Separation by Means
of Batchelor’s Model”, Fluid Dyn., Nov., pp.
206-211, 1984



