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ABSTRACT

The basic conditions for a parallel-flats fraction to be a search design of Resolution [f.
2 have been developed in Um(1980, 1981, 1983, 1984 ). In this paper, a series of resolution
.2 search designs for 3%, n=4,56, are presented.

1. Introduction
A parallel- flats fraction is defined as

f
T=U
i=1

{t;At= ci)

where A is rxn of rank r. Each equation At= ¢, has 3" points and is called a flat. The
f flats have no points in common, hence are termed parallel, with [T|=f - 37T All of the
designs constructed in this paper contain r=n-2, that is, flats of size 9. The parallel-flats
fractions will be denoted symbolically by At=C, Where C=( € Cptre Cr).

The choice of A determines the alias sets for the fraction, The estimate of an effect of
the jth alias set from the ith flat, denoted by §,J, is actually a linear combination of all the
factorial effects in that alias set. The form of the linear combination depends on ¢y, and
s characterized by the permutation relation of levels of each effect in the set to the identified
effect Si;. These relations are given in the alias component permutation matrix (ACPM).
The elements of the ACPM are from the permutation subgroup {e, (012), (021 )} and express
the way levels of each effect are related to the effect identified as S;, The element of the
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ACPM for an effect E in the jth alias set for the ith flat can be computed from a single
linear function of the elements of ¢, say d(c;). The correspondence is d(c;)= 0—e, d(c,)
= 1— (012), and d(c)== 2—(021). The construction of a fraction is completed by the
specification of A and C. For each design presented the matrices A and C are given along
with the alias sets, the functions ¢(c,), and the ACPM matrices. For further details, see
Srivastava(1975, 1976) and Um(1980).

The differences

A% : 3] ;
Si-Sty i<i’=1.2,- f1 j=1,234; x=12,

are given the value 1 if the difference is nonzero and 0 if the difference is zero, This produces
an observed vector called a (0,1) detection vector. Each configuration of interactions gives
rise to an expected (0,1) detection vector which can be obtained from the ACPM matrices
(see Um(1983)).

From the ACPM matrices a (0,1) detection vector is obtained for each combination of
two or fewer two-factor interactions, If there are n main effects, then there are (9 two-
factor interactions, say m. Therefore, (5)+ (D) (0,1) detection vectors have been con-
structed for each design. For the various values of n the following number of (0,1) detection

vectors are obtained:

n 45 6 7 8 9
number of (0,1) detection vectors : 22 56 121 232 407 667

An element of a (0,1) detection vector is determined form the difference between the
ith row and 1’ row of the submatrix composed of the columns corresponding to the effects
of interest for each ACPM P, j=1,2,34. If the difference is zero, then the corresponding
element of the (0,1) detection vector is zero, If not, then the corresponding element is one,
Suppose that there are f flats. Then there are (f) differences for each ACPM and hence

(£)- 4 elements in a (0,1) detection vector,
2. Search Designs of Resolution . 2 for 3*

The A-matrix selected for the 3' factorial is
A=11110
1201

The alias sets partitioned by the A-matrix are given by
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So={u},

S,={F,, F.F,, F.F2 F.JF.},
S,={F,, F|F, FF, F,F},
S,={F,, F.\F, F.F? F,F,},
S,={F, F\F2 FF; F,JF%,

With the single flat ¢ = (C1 ¢2) the defining vectors of ACPM where columns are associated
with effects in the same ordering as listed in the alias sets are given by

Ci= (0 21 2c2 cee2), CGo= (0 201 2 et 2e2),
Ci= (0 2a 2(ewee) 2ervee), Ci= (0 2¢2 2(crrce) ot 2c2).

There are only eight equivalence classes of C-matrix with two rows and three columns,
The number of those classes are enumerated in Um(1981, 1984). In order to find a search
design it is enough to consider only one element in each equivalence class. Table 2.1 shows
a representative matrix from each equivalence class,

TABLE 2.1. Representative Matrix from Each Equivalence Class

Class1 Class2 Class3 Class4 Class5 Class 6 Class 7 Class 8
001 012 001 001 000 012 012 012
012 001 010] (011 012 000 012 021

Consider the representative element in each class from Table 2.1. Using Cj, the following
alias component permutation matrices (ACPM) P, for the class 5, 6, 7, and 8 are obtained

respectively :
e e e e ] e e e e
P= e e (021) (012) ], P,=1e (021) e (012) |,
e e (012) (021)] e (012) e (021)],
e e e e ] Fe e e e
P=|e (021) (021) (021)], P=1e (021) (012) e,
e (012) (012) (012)] e (012) (021) e]




Search Design of Resolution [.2 137

Since the above matrices do not have a full rank, the C-matrices for classes 5, 6, 7, and
8 do not produce resolution II. 2 search designs.

Consider C= l:O 0 lj| in class 1, which produces the following ACPM.

012
(e e e e ] e e e e ]
P=|e e (021) (012){ , P,=|e e (012) (021)],
le (021) (012) e | e (021) (021) (021)]
e e e e ] e e e e |
P;=|e e (021) (012) | » P,=|e (021) (021) (021)].
e (021 e (0(012) | e (120 e (021)]

These matrices have a full rank and these ACPM produce the distinct(0,1) detection
vectors for every combination of two or fewer two-factor interactions. Table 2.2 shows the
(0,1) detection matrix produced by the ACPM. In table 2.2, the first row denotes the di-
fference of ith row and i’ row, and the second row represents the subscripts of ACPM. The
column 4-8 denotes the subscripts of two-factor interactions. Therefore, the C-matrices
in class 1 produce a resolution [.2 search design. Similary, it can be shown that classes
2, 3, and 4 also produce search designs of resolution [I.2.

The treatment combinations from class 1 are obtained in flats of size nine by solution

1110 16 |= 001
1201 te 012

The treatment combinations are displayed below:

to

Flat 1 Flat 2 Flat3
0000 0001 0012
0121 0122 0100
0212 0210 0221
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TABLE 2.2 The(D,1) Detection Matrix for the 3* Factorial .

1022
1110
1201

2011
2102
2220
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1020
1111
1202

2012
2100
2221

1-2 1-3

1234 123
1 MAIN 0000 000
2 12 0001 001
3 13 0001 010
4 14 0110.010
5 23 0001 100
6 24 1010 101
7 34 1100 010
812 13 0001 011
912 14 0111 011
10 12 23 0001 101
1112 24 1011 101
12 12 34 1101 011
13 13 14 0111 010
14 13 23 0001 110
1513 23 1011 111
16 13 34 1101 010
17 14 23 0111 110
18 14 24 1110 111
19 14 34 1110 010
202324 1011 101
21 23 34 1101 110
2224 4 1110-111

1001
1122
1210

2020
2111
2202

2-3
4 1234

0 0000
1 0011
0 0101
0 0110
1 1000
0 1000
0 1000
1 0111
1 0111
1 1011
1 1011
1 1011
0 0111
1 1101
0 1101
0 1101
1 1110
0 1110
0 1110
1 1000
1 1000
0 1000



Search Design of Resolution [1.2 139
3. Search Designs of Resolution [[.2 for 3° and 3°

3.1. The 3 Factorial
The A-matrix selected for the 3® factonal is

10100
A= {11010
12001

The alias sets partitioned by the A-matrix are given by

So= {#, FiF3},

S,= {F, F, F\F F,F, F.F? FF.},
S,= {F,, F\F,, F\Fs, F;F3 F,F2 FF2},
S,= {F,, F.F,, F\F% F,F% F,F, FFy},
S.= {Fs, F.F% F\F3 F,F, F.F% FF,}

The single flat C= (c1¢2 c3) produces the following defining vectors of ACPM.

Ci= (1c1)

Ci= (0 2c1¢12c22C3C14C3)

C;= (0 2c2c3c1+ 2C2 2C1+C3 C2+ 2C3)

C;= (0 2c22(c2+c3) c1+2c2 2c2+c3 2(c1+c2+c3) )
Ci= (0 2c32{C2+C3) C1+2c3 C2+ 2¢3 2(C1+C2+C3) ) .

With the C-Matrix

0120
C=[oo12]|,
0112

the Alias Component Permutation Matrices are given by
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P,=
F,
e
P= e
e
e
F,
e
P,= e
e
e
F,
e
P,= e
e
Fs
e
P,= e
e
e

— ke e e R

(021)
(012)

FF,

(021)
(012)

Fle

(021)

F.F}

(021)
(021)
(012)
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FF,

F.F3

(012)
(021)

F.Fs

(012)
(012)
(0z21)

F\F?

(012)
(012)

F,F}

(021)
(012)
(021)

F.F,

(021)
(012)

F.F%

(012)
(012)
(012)

F,F?

(012)
(012)

F.Fs

(012)
(012)

F.F?

(021)
(021)
(012)

F.F2

(021)
(021)

F.Fs -

(012)

FF?

(021)

F.Fs

(012)
(021)
(012)

F,F?

(021)

F,.Fs

(012)
(021)

F.F,

(012)
(021)
(021)
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The following treatment combinations are obtained in flats of size 9.

Flat 1 Flat 2 Flat 3 Flat 4
00000 00101 00211 00022
01221 01022 01102 01210
02112 02210 02020 02101

10222 10020 10100 10211
11110 11211 11021 11102
12001 12102 12212 12020

20111 20212 20022 20100
21002 21100 21210 21021
22220 22021 22101 22212

Comments. Since F, and F, are aliased with each other in the alias set S,, there are ten
cases which produce identical (0,1) detection vectors. Those ten cases are main effects and
F.F, and all {F,F;(F.F,FF,;)} where F;F; &+ F\Fs. The (0,1) detection matrix has all
distinct vectors except for these ten cases.

For each case we have to check whether the submatrix obtained from ACPM is full
rank or not. For example, consider F\F, and (F,F,F,F;). From P, P, and P, the following

submatrices are obtained respectively.

F, F, F[F2 ¥, F/F, F, F[F:
e e e e e e €

e (021) (012) e , e e (021)
e (012) (021) e (021) e (021)
e e e e (012) e (012)

It is clear that these matrics are full rank. Similarly, it can be shown that for each
case the submatrices obtained from ACPM are full rank,

3.2. The 3° Factorial
The A-matrix selected for the 3% factorial is
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111000
A=|120100
120010
110001

The alias sets partitioned by the A-matrix are given by

So= {, F;F3, F.Fi},

S,= {F,, F.F,, F.F% F,F2 F,F,, F.F, F.F, F,F, FFe},
S,= {F,, F\F;, F\F, FFs, F\F, F,F% FFE FF2 FF2),
Sy= {F,, Fe, FiF,, F\F% F\FE FF,, F.F;, FoFe},

S.= {F, F;, F.F} F\F3 F\FZ F,F3 F.FZ FFs} .

The single flat C= (c1c2c3ca) produce the following defining vectors of ACPM.

Ci= (1 c1+2c4 co+ 2c3)
Ci= (0 2c12c22C3 2C4 C1+C2 C14C3 C2+C4 C3+C4)
5= (0 2c1C2 3 2C4 C1+2C2 C1+2C3 2C2+C4 2C3+C4)
Ci= (0 2¢1+C4 2¢1 2(C1+C2) 2(C1+C3) 2C1+C2 2C1+C3 C1+2C4)
Ci= (0 2cz+c3 2c2 2(c14C2) 2(C2+C4) C1+2C2 2C2+C4 C2+2C3)

With the C-Matrix

01202
C=101120
02011
00112

the Alias Component Permutation Matrices are given by

¢ F,Fi (FFe)? F,JF: (FF2)?
1 —1 1 -1 1
1 0 -2 0 1
P,= 1|1 0 -2 0 —2
11 1 0 —2
- 1 1 1 |




F, F)F,

[e e
P.=1]e (021)
e (012)

e e
e (012)

F, FJF;

e e
P,=|e (021)
e (012)

e e
e (012)

Fa Fe

e e
P,=1|e (021)
e (021)
e (012)

e e

F, F,

e e
P.=[e (012)
e (021)
e (021)
e (012)

F,F?

(021)
(021)
(012)
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F.F?2

e
(012)
e
(021)
(021)

F.Fs

e
(021)
e

(012)

(012)

F,F?
e
(012)
e
(012)
(012)

FF}

e
(012)
e
(012)
(012)

F.Fe

e
e
(021)
(021)
(012)

F.F¢

(021)
(021)
(012)

F.F2

(012)
(021)

F,F2

e
(021)
(012)
e
(012)

F.F,

e
(021)
e
(021)
(021)

FyF%

e

e
(012)
(012)
(021)

F.F,

(021)
(021)
(012)

F,F?%

e

e
(012)
(012)
(021)

FF;

e
e
(021)
(012)

F.F?
e
(021)
(021)
(021)
(012)

F.Fs
e
(012)
(012)
(012)
(021)

F.F?
e
(021)
e
(021)
(021)

F.JF,

e
(012)
(021)
e
(021)

FFZ

e
(021)
e
(021)
(021)

F3F

-
€

(012)
(012)
(021)

e

F4F5

e
(021)
(012)
(012)

(021 )A

The following treatment combinations are obtained in flats of size 9.
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F.F,

(021)
(012)
(021)

F.F;

(012)
(012)

(012)
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Flat 1 Flat 2 FlLat 3 Flat 4 Flat 5

000000 001120 002101 000211 002012
012112 010202 911219 912929 911121
021221 022011 020022 021102 020200

102222 100012 010120 102100 101201
111001 112121 110102 111212 110010
120110 121200 122211 120021 122122

201111 202201 200212 201022 200120
210220 211010 = 212021 210101 212202
222002 220122 221100 222210 221011

Comments. The (0,1) detection vector for main effects is identical to the (0,1) detection
vectors for FyF, and for F,F,. This implies that the (0,1) detection for main effects is also
identical to the (0,1) detection vector for (F;FF.Fs). The (0,1) detection vector for FiF;
where FF;*+F,Fs and for F,F;#F,F;, is identical to the (0,1) detection vecotrs for (FF;
FsFs) and for (FF;F,F,). Therefore, there are 29 cases partitioned into 14 sets which
produce the identical (0,1) detection vectors. The (0,1) detection matrix has all distinct
vectors except for these 29 cases. It can be verified that for each partition the submatrices
obtained from ACPM is full rank.
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