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ABSTRACT

Two properties of ancillary statistics are considered. One 1s to find a role of ancillary
statistics In the statistical inference by showing that the ancillary statistic can recover the
lost information and to give a criteria for comparing the conditional inference with uncon-
ditional inference. The other is to find an ancillary statistic of translation model and its

relationship with observed Fisher information,
1. Introduction and Summary

In the parametric probability model, reliability of the statistical inference is largely depend
on the precision of the estimator of the parameter. So improving the precision of the estimator
is one of the most important topics in the statistical inference. Most of the cases, a function
of sufficient statistic gives the best estimator, and an ancillary statistic is a statistic whose
distribution is free of the parameter, So ancillary statistic by itself gives no information about
the parameter. But some cases precision of the inference about the parameter can be im-
proved by conditioning on the observed value of the ancillary statistic, if one exists.

But there are two difficulties with ancillary statistics., One is that there is no general
method for constructing ancillary statistic and the other is that ancillary statistic may not
be unique and can not be derived the best one such as minimal sufficient statistic, No one
has suggested any solution for the first problem. But for the second problem, we can find
some rules at Cox and Hinkley (1974, pp. 43-44) and Cox (1971).

In this research we have studied two properties of ancillary statistics. One is the usefulness
of ancillary statistics based on the Fisher information (which is related with the second
problem), and the other is to give a rule to find ancillary statistics of a translation model

(which is related with the first problem). In section 2, we show that how the ancillary
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statistics can recover the lost information and give a criteria for comparing the conditional
inference with unconditional inference, In section 3, we derive an ancillary statistic of a
translation model and find relationship with derivatives of log likehood function at e:é,
which was proved to be ancillary statistic by Efron and Hinkley (1978).

2. Fisher Information and Ancillary Statistics

Fisher (1934) has shown that the maximum likelihood estimator (m.l.e.) which is a fun-
ction of sufficient statistic, gives the best estimator for the parameter, But, in some cases,
the mle. can not contain all the information that the data has and ancillary statistic can
recover the lost information'.

In this section, we will study the relationship between ancillary statistic and Fisher in-
formation, show that how the ancillary statistic can recover the lost information and give
a criteria for deciding what to condition on and whether to condition at all.

Let {f(X:G):Ge\@} be a probability model and (T, U) be minimal sufficient statistic.
Suppose the joint density of (T, U) is factored into conditional and marginal according to

f(tui0)= £,(t [ u:0)f,(u:6) (2.1
where we deliberately allow 6 in f,. For f, f, and f,, the regularity conditions of the likehood

function are assumed to be satisfied. Let the logarithms of f, f,, f, be |, m, m,, so that if

prime denotes derivative with respect to 6,

1= m1+ m,
1I'= my+ my’
“=m"+ m, (2.2)

and by a simple calculation, we can get

E(m, | u)= 0, EI'=Em/= Em,= 0

E(m?| u)= -E(m,” | u)

E(1%)= -E1”

E(m,*)= -Em,” (2.3)

The Fisher information in (T,U) can be defined as

u(0)= -E1"= E17, (24)
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and the information in U as
w(0)= -Em,"= Em,?, (2.5)
and the conditional information in t given U as
itp(0)= -E(m," | u)= E(my | u). (2:6)
When U is distribution constant (which means that U is an ancillary statistic ) then m,=
m, = iy(0) = 0, and i;;,(0) could equivalently be defined as -E(1” l u).

Now consider the identity 1"=m; + m,".
If we take first conditional and then marginal expectation we get

i,u(6)= Eiyu(0)+ iu(6) 2.7)

In words, the total information equals the expectation of the conditional information plus
the marginal information., When U is distribution constant so that i,(0)=0, this reduces
to a well known result of Fisher which purports to explain how the ancillary statistic U
recovers the lost information,

Equation (2.7) furnishes some possible criteria for deciding what to conditon on and
whether to condition at all:

(a) U, is a better conditioning statistic than U, if

iy (8) <iy,(8) for all 6. (2.8)
(b) conditional inference using t | U is prefered to unconditional inference using t if
Eiu(6) >i.(8) for all 6, (2.9)
or equivaently if
11(0)+ 1u(0) <ig,u,(0) for all o, (2.10)

Because of the dependence on 8, these two criteria give only partial results for using ancillary
statistic as a conditioning statistic,
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3. Transiation Model and Ancillary Statistic

Fisher (1925, 1934) has addressed that the observed Fisher information is an ancillary ‘
statistic, and Efron and Hinkley (1978) has shown that the derivatives of the log likehood
function at m.le. are ancillary statistics for translation model and (at least) approximate
ancillary statistics for the other models.

In this section, we will show that the likehood shape statistic is an ancillary statistic for
translation model and it is equivalent with the ancillary statistic defined by Efron and
Hinkley (1978), and give an example that observed Fisher information is not an ancillary
statistic for some nontranslatién model, The m.lLe. of 8 will be denoted by @), and the regularty
conditions for the likelihood function are assumed to be satisfied. Buehler (1982) has defined
the translation model such that f(X:0) is a tralslation model if X is one to one with (/G\,U,
V) where (@,U) is sufficient for 0, U is distribution constant, V is a statistic which is needed
to make X and (é,U,V) have a same order, and the conditional density f (é | u:8) has the
form of fo(é—e [ u),

Theorem 3.1. If f(x:0) 1s a translation model, then f(x:0) « fo(@-(-) | u), where oc means
“proportional as a function of 97,

A . .
Proof. If J is the Jacobian of the transformation from x to (8,u,v), then using sufficiency
and ancillanty we have

f(x:0) = f(B.uv:0)]
= f(Bu:0)f(v | Bu)J
= £(0 | w:0)f(WE(v ] Bu)J
o £,(8-0 | u). -

If x, and x, are values of X then we will denote ’é(xj) by 6,- and similarly for other sta-

tistics.

Definition 3.1, If f(X;0) is the likehood function, 0 is the m.le, and 9+@(X) & ® (parameter
space), %, and x, are any two points in the sample space, then we define that W(X) is
a likelihood shape statistic if

W(X)= W(X,)& f[X,:0+08(X,)] o f[X,:0+8(X,)].

The likelihood shape statistic W (X)) specifies the shape of the likelihood function apart
from its location, 8.
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Theorem 3.2. If £(X:0) is a translation model and W (x) is a likelihood shape statistic,
then

(1) (é\,W) is minimal sufficient

(ii) w= u, implies w,= w,

(iii) w is distribution constant.

Proof. ( i ) Using the known minimal sufficiency of the (normalized) likelihood it suffices
to show (8,w,) = (Bw,) & f(x,0)ec f(x,: 6).
"Assume the latter, then 6,= 0, and

£(x:046)) o £(%,:046,)= f(x,:04-6,),
and so w,= w, Next assurne (@hwl)z (@z,wz).

f(x,: 0)= f(x,; 64+6,), where 0= 6+ B,
o f(lee—l-éz), because w,= w,
= f(x2:9+él), because é1= 62
= f(x,: @) for all &

(ii) assume u,= u,, then

£(x,: 0+8,) o £,(B,- (0+8,): ) by Theorem 3.1
= £,(-0:u,)
= f,(-0;u,)
= £,(0- (046,): u,)
oc f(x2:6+§2) by Theorem 3.1

which shows that w,= w,,
(iii) this is a consequence of (ii). ||

Theorem 3.2. states that if we have a translation model, then the likelhood function deter-
mines an exact ancillary statistic W such that (§,W) is minimal sufficient. The statistic
W simply specifies the shape of the likelihood apart from its location 8. The shape W and
location 8 together determine the likelihood function,



98 Yong Goo Lee

Examples 3.1. If f(x:0)= _ﬁl f(x;-0) is a translation model and there is no sufficiency
i=

reduction beyond the order statistic, then W is the order statistic spacings (Xeg-Xu, -,

X(n)_X(l) ) -

Example 3.2. (Efron and Hinkely, 1978) The parameter 9 is measured by one of two

measuring instruments whose errors are N(0,0,2), K=0,1, where 0,2 and o2 are known and

unequal. Let Pr{a;= 0)= Pr(a;= 1) :%, then after n measurements we get (a, x,), -+,
(an, Xn), 5= 0 or 1.
Assume that instrument 1 was used A times. Then (6, A) is the minimal sufficient statistic

and W is equal to A.
Define the log likelihood function by full and abbreviated notations by
1(6:x)= 1o = log f(x:0).
Derivatives with respect to 6 will be denoted with varying degrees of abbreviation as
21(0:x) /98= 1'(B:x)= lo’= 1"
o’1(0:x) /a6 = 17(0;x) = 1§ (3.1)

H1(B:x) /9B = 1¥(0:x) = 1 = 1%

values at the maximum will be further abbreviated for example by

1= 15 = 17(6:x) (32)
we will call
I(x) = -1" (3.3)

the observed Fisher information, and we will call

1(9) = Ee(l”)z = _Eel”

the (expected) Fisher information,
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Efron and Hinkley (1978) has proved that Wz(i", 1® .--) is an ancillary statistic for
translation model. To the extend that 1(0:X) is an analystic function in 8 with a convergent
expansion about é the statistic W of Theorem 3.2 is quivalent to \7\//’ for both statistics
determine the shape of 1, about = 9 and are determine by that shape.

While (QW } 1s in fact minimal sufficient, W nevertheless contains redundancies in that
a finite vector will suffice to determine the rest. For Example 3.1, we could reasonably expect
to use (17, ---, 1), and for Example 3.2, 1"= [(x) suffices.

An interesting question is wheather ancillarity of \7/ and in particular of i": I(x) carries
over at least approximately to other models. These questions have been addressed by Fisher
(1925, 1934) and by Efron and Hinkley (1978). Intuitively a large value of 1(x) corresponds
to a sharply peaked likelihood and so large 1(x) seemingly indicates high precision, But
ancillarity of I{x) depends on the parameterization and in some cases I(x) is not an ancillary
statistic at all.

Example 3.3. Consider the autoregressive model

X, = 0X; + ¢, i=12, -+

t

g, ~ iid N(Q, ¢*) (3.4)
The log likelihood equals a constant plus TO-V6? /2, where

=5%;X; ad V=5 X, (35)

then 8= T/V, (B,V) is sufficient, and I(x)= V.
Specifically for n=2, X,=1, EV=E(X+ X?)= 24 &, showing that V is not distribution
constant,
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