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A Contour-Integral Derivation of the Asymptotic
Distribution of the Sample Partial Autocorrelations
with Lags Greater than p of an AR(p) Model*

B. S. Choi”

ABSTRACT

The asymptotic distribution of the sample partial autocorrelation terms after lag p of
an AR(p) model has been shown by Dixon(1944). The derivation is based on multivariate

analysis and looks tedious. In this paper we present an interesting contour-integral deriva-
tion,

1. Introduction

Consider the autoregressive model of order p, AR(p),

¢(B)yt:Vt, (11)

where ¢ (B)=—¢,~ ¢ B—.. . — ¢po, #.=—1, B is the backshift operator and {vy Is
a sequence of independent and identically distributed random variables with E(v,)=0, E
(vi)=¢* and E(v{)=30"+k,({ o0). We assume that the process is stationary, ie., the equa-
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tion @(z)=0 has all the roots outside the unit circle. Let {o (¢) } and {,} be the autocovari-
ance function, ACVF, and the autocorrelation function, ACRF, respectively. The stationarity
implies that the ACRF satisfies the following Yule-Walker equations:

Pj =1 0jert " T PpPjup F=12,000, (1.2)

L si00=-0/o0. (13)

Henceforth we denote (xa,++,%,)t by X for any vector x=(x,,-*Xa)t. Let p(k)=(p,-",
o)t For a positive integer k, we define a k by k Toeplitz matrix B(k) with (,,m) element
Pr-m. Since B(k) is positive definite, we can define some vectors:

S (k)=B(k) ' p(k),
0= p,, ~& (k) 'plk),
Ak =1-p(k)* ¢ (k)

for k = 1,2,---. Then, g(k) is the solution vector of the Yule-Walker equations (1.2) for j
= 1,--k, which can be efficiently solved by the Levinson(1947) and Durbin(1960) algori-
thm

Gk 1 ):<g(k)—0(k) 2(k)/)(k)>
- 6(k)/A(k)
Alk+ 1= (k) {1 - 0(k)2/2(k)?}.

The initial values are 9(0) = p, and A(0) = 1. Hereafter we denote the /-th element of
¢(k) by $i and let gy = —1.
For a given realization {y,,:-,yr} we estimate the ACVF and the ACRF by

1 T

3(”:?12::1(}"“ “;) (yl—;) and ﬁ,:(;(l)/O'A(O)

where ¥=3y,/ T. When the sample ACRF is used instead of the ACRF, the solutions of
the Yule-Walker equations are called the Yule-Walker estimates of the AR parameters.

Throughout this note we use the sample ACRF and the Yule-Walker estimates, Other
parameters are estimated by putting the sample ACVF and the Yule-Walker estimates
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instead of the ACVF and the AR coefficients into their definitions.
It is well-known that the partial autocorrelation at lag k is equal to ¢4,x. Thus we can
redefine it as follows,
Definition 1.1 The partial autocorrelation at lag k is defined by
Prok=0(k=1)/2(k=1), k=12, -
It is known (Dixon [1944] and Quenouille[1949]) that if the underlying process is from
an AR(p) model then ¢.’s, k)p, are asymptotically independent and identical random

variables. The purpose of this paper is to present a neat derivation of the asymptotic dis-
tribution using complex analysis.

2. The contour integral derivation

The nonsingularity of B(k) and the consistency of the sample ACRF imply the following
property. (See, e.g., Tsay and Tiao[1984].)

Property 2.1 If the underlying process is from the AR(p) model in (1.1), then the fol-
lowing holds for k(= p).

(@) g(k)=(¢, -, 850,00
(b) 51(,, = ¢, + Op(T?), where ¢, is understood to be ¢ for 7 dp.
(c) A(k) is consistent to a/a(0).

The following asymptotic property of the sample ACRF is due to Bartlett(1946).
Property 2.2  If {y,--,yr} is a T-realization of the AR(p) process in (1.1), the random
variables T3(p,—p,), -, TY*(fn—pP,) have asymptotic normal distributions with means 0

and covariances

Tum’r COVI(pg,pn)

4T

=~y L. (COS Ah=p},) (COS 28 ~p,) S? (1) da

where S(1) is the spectral density of the AR process, ie.,

2 .
S =T—|g (e’ |72,
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Theorem. If {y, -y} is from the AR(p) model in (1.1), then, for k )p, T*? ak,k’s are
asymptotically independent normal random variables with means 0 and variances 1.
Proof. If welet ¢4, = —1, thenthe sampled version of the Yule-Walker equations

imply that
~ k=1 k=1 -~
0 (k—l ) = -_r§=30 SZ::O ¢k—l)r¢ k=13 sPk=r=s.

Then, Property 2.1(b) implies that -§(k—1) equals

k-1 k-1
- z z: {r+0p (TTV2) } (G +O,(T™V2) ) frer—s .

r=0 s=

—0 = 0¢¢spk—r-s op(.f)-

Thus, T"%(k—1) has the same asymptotic distribution as

V = _Tl/z Z Z ¢ ¢spk-r s .

r=0s=0

We are going to show that, for k >p, the random variables V,”s are asymptotically inde-
pendently and normally distributed with means 0 and variances

lim Var V) = {o /6 (0) }2

T—so0

It is known (see, e.g., Anderson[1971, p.217]) that the random variables V and V, are
asymptotically normally distributed. The consistency of the sample ACRF and the Yule-
Walker equations imply that their means are zeroes. Property 2.2 implies that the asymptotic

covariance is

11m COV(V] 5 Vk)

p
= lim T E SZ P Eo ‘E,o Puby Cov (Breree, Bjoumy)

Toroo

P

_(, (0) f D HDIHD Br D Pupy € AEHITITSTUIV g2 (2) 42

—x r=0 $=0 u=0 v=0

2(0) f Z ¢ ¢s¢u¢ etl(k*] r=s+utv) S (1)da

—x r=0 s=0 u—O v=0
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)

8 z P P 14 : S—
_a’fo) -[, Ea s=0 u§0v§0 PrPsPufPyp jmu e AT 82 (Dd2

25 5 D 5.6.8ub Plcrmipimumy ST

62(0)Y=x r=0 s=0 u=0 v=0

If we let Z=exp(it), then the first integral of the RHS equals

o?)? BT
(-E §C Zk+j {¢(Z) } —i-z"dz

where C is the unit circle with its center at the origin. Since ¢(z) has all the zeroes outside
the unit circle, and since j+k is greater than 2p, the integrand has no poles inside or on
the simple closed curve C. Cauchy’s integral formula yields that the first integral is zero.
The third integrand equals

{ i i ¢r¢s e“(k_r_S)} { pE i ¢u¢vp5-‘,w}s2(z)

r=0 s=0 u=0 v=0

Its second factor is equal to zero by (1.2), because j 0. Similarly we can show that the fourth
integrand is zero. The second integral equals

2 2

T iak-j =i i 1
J'_xe ick J)¢2(e 1) ¢2(e Z) {%’;m} a1
_ g% px fay
_(-E) J'-‘ eidtk—i) 43
4
_ (0
_('EE‘) 5k1j y

where d) , is the Kronecker delta. Thus,

llmCOV(Vk,VJ )= {0'2/0'(0)}251(,]',
Tewco

We know that T*? 3 wk=T"%9(k—-1)/ i(k—l). Since Property 2.1(c) says that the deno-
minator i(k—l) is consistent to ¢%c(0), T*? f WS are asymptotically independently nor-
mally distributed with means 0 and variances 1. @l
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