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On Exponential Utility Maximization
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Abstract
Let B be the present value of some sequence. This paper concerns the maximization of the expected

utility of the present value B when the utility function is exponential.
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1. Background

Let Xi. Xo . . .. be the sequence of single period rewards of a Markov decision process (hereafter called

MDP). The present value of this sequence is
() B= 3 pX,

where 0<B<1 is discount factor. We emphasize that B is a random variable.

This paper concerns maximization of E[u,(B)] for the utility function w(x)=—e** Jaquette [10], [11] studies
the same problem as ours, namely maximization of ELu, (B) 1. The analysis in [10] exploits the fact that E[u,(B)]
is the negative of Laplace transform of B. As a result, there is a 2>0 and a stationary policy which is optimal
for all ()<)\<)m

Let B,.= E X. Howard and Matheson [9] studied the maximization of Elu,(B.)] both for fixed n and
as n o, Let B. = 11m B, if the limit exists. Denardo and Rothblum [4] studied the maximization of Elw(B.)]
in a stopping problem.

That is. the model in (4] is an MDP in which each set A, includes an action which “stops” the decision
process. The models in [4] and [9] exhibit risk-sensitivity but lack time-preference 3 the absence of discounting

is the principal difference between their models and ours.
2. Notation.

Consider a Markov decision process with discount factor B (0<B<l). Let S be the state space. Let As be
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the set of actions available in state s and C={(sa) : acAs, seS}. Let s,, a, and X, indicate the state, action
and reward in the nth period. We assume that s,., and X, be random variables which depend only on s,

and a. Suppose that there is a countable sample space K such that P(X.€K)=1 for all n. Let
w=Pls,.;=} X,=k|s,=s, a,=a}.

We assume that K lies in a compact set ; this corresponds to the assumption that there is b<oe such
that

Plo<Xi<b | s;=s a;=al =1 for all (s, a) €C.

We indicate that the present value of the single rewards is B= Z 8~'X, which takes values only in [0,
u] where u=b/(1—p).

3. Optimality equations.

Let B(n) =% B' 'X; with B continuing to denote B(co). For each seS and A=0, let fi(s, AV =—1,
11

£:(s M =sup(E(—e* | s,)=5)} (n=1 2 ...),

2 fs W =sup{E(—¢™® | 5,=5)}

where the suprema are over all policies.

It can be shown that
(3) f.(s, M) =max{E[e™x,f, | (s; BV | s, =s, aa=al; aeAg}Zmax{eZg; W £ (, BN T aeA,}
[
where ¢3(0) = P e™ Let m be a policy and v(m, s, M =E,[-e™® |s,=5]

where E, denotes the expectation with respect to the probability distribution of B induced by m. The n¥ is
said to be A-optimal if v(n*, s, A)=v(n, s, &) for all s€S and n.

The main result of this paper is the following.

Theorem 1 Suppose -
(d) For each se€S, A.cR (the set of real numbers) and A, is a compact set.
(e) For each s€S and nel.={1, 2 ...}, J.(s, a) is lower semi-continuous on A,
where J.(s, a) :Jezs a5 .G, BA), (s, a)eC.

Then the following statements hold.

(a) For each se€S and 6>0,

lim f.(s, 9)=As 0)




with f,(s, 0)=f,+./(s, 8) for @l n.

(b) For each s€S and 0>0,

(4) (s, B)Zmax{eﬁ9 q2(0) (G BO) racAl.
JES

(©) Let a,=84(s) € A, attain the maximum in (4) when 6=8"'A and let n(A)=(8y, 8z,) be the policy
which uses the single period rule &, in period n. Then n(}) is A-optimal.

Before we show that Theorem 1, we need Dini’s theorem.

Theorem 2 (Dini) [16] : Let {g.} be a sequence of upper semicontinuous real-valued functions on a countably
compact space X, and suppose that for each xeX, the sequence {g.(x)} decreases monotonically to zero. The
{g.} converges to zero uniformly.

We specially indicate that if a real-valued function h is lower semi-continuous, then -h is upper semi-continuous.

The proof of Theorem 1 : Fix 6>0. Since B(n)=6 for all n, -1<-exp [-0B(n))=o, so-1=f(s, 8)<0 for all
n s and 0. Therefore fo(s, 8 < fi(s, 8). Induction leads to f.(s, ©)<f...(s, 8) for all 620. It follows from

(8) plo=Xi<u for all i} =1

that P{0<B—B(n)<p"u/(1—B)} =1. Therefore
£.(s, 0)=f(s, B)=f,(s, 8 exp[-6pw/(1-p)]
<f(s 0 exp [—0pu/I1-P)]:

fs, O=tim £(s 0).
Now we shall show that f satisfies (4). Using f.(s, 0)<f(s, 8) for all n, s, and 8,
a . < a| s
};Zg 40 £.G BO)_JEZS ¢2(0) .G po).
Fix s and 0. We get
£.(s, O)<sup{J(s, a) : acA}
were J(s, @)= ; a0 G o).
7
In order to derive the opposite inequality, we start with f(s, 8= f,(s, 8) to obtain
s 21, 0)=supllls a) T acAl.
By assumption, the supremum is a bounded monotone sequence (as n—w) ; so it has a limit. Therefore
6) f(s @zlm{].(s a) tacAl], seS.

Dini’s theorem, assumptions (d) and (e) imply for each se$S that J.(s, @) converges uniformly to J(s, a) on

A. Therefore for each >0, there exists an integer m if nzm so that

—e<].(s, a) —J(s a)=0 for all acA,



So sup{J(s a) ‘aeAl<etsupll(s a) :acAl
and sup{)(s, a) TaeAl=lim supil(s a) lacA}+e
Since € is an arbitrary ‘positive number, sup{](s, a) : aeA}l<lim sup{J.(s, 2 : aeA}. By (6), we get
fs Vzsuplls, a) laeAl).

So (4) holds.
In order to establish () in Theorem 1, define n(A) as in the statement of (c¢) in Theorem 1. An induction

which employs (4) and starts at n=1 establishes
f(S, A :En()\)[-efmm f(Snu, B") [ 5,=s5]

for all n=1, 2, . . . . However, f(s,.;, p"A)—1

as n—o because (5) implies
expl-Bhu/(1—-B)]<f(s,.,, BRI for all n
(all with probability one). Therefore
s, M=Eo (-5 =5s).

This completes the proof of Theorem 1.

Comments. 1°. A result analogous to Theorem 2 is valid for minimization problems. That is, if “inf” replaces
“sup” in (2), then (3) and (4) are valid with “min” replacing “max” and parts (a), (b) and () remain
true when A, is compact and J.(s, a) is lower semi-continuous on A,

2°. For the related results about our optimality equations, see [5], [7], [13], [17], and [19].

4. A Pointless Procedure

Let F be the set of all bounded real-valued functions on S. Fix A(A>0). For each u € F and v F, let
d(u, v)=sup{ | u(s, ) —v(s, A) | :seS} Then (F, d(-,-)) is a complete metric space.

Without loss of generality, we assume that
P{Xi>1!|s=s, %=} a=a}=1 so EZS () <1, (s, a)€C, 8>0. Define a mapping I': F>F where
1
T'u(s) =max|{ JES 3(0)u(j8) : acAy} for seS.

Then d(Tu, Iv)<e®d(u,v) for all uveF. Hence, T is a constraction mapping, and the fixed-point theorem
for contraction mappings guarantees that T' has a unique fixed point. Since T0=0 it follows that 0 is the fixed

point of T. Therefore, the equation

g(s, ) =max| = @4(0)g(j,0) : acAs}

JES

e AR A 0




has the unique solution g(s,0)=0 for all seS and 8>0. Therefore, iterating I' from any initial function does
not necessarily yield improving approximations of f in (4) but iterating A in [2] from any initial function does

yield improving approximations of the optimal solution of (3) in [2]



REFERENCES

[ 1] D. P. BERTSEKAS, Dynamic Programming an Stochastic Control, Academic Press, New York, 1976,

[ 2] E. V. DENARDO, Contraction mappings in the theory underlying dynamic programming, SIAM Review.
9(1967), 165-177.

[3] E. V. DENARDO, Dynamic Programming, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[4] E. V. DENARDO AND U. G. ROTHBLUM, Optimal stopping exponential utility, and linear programming,
Math. Programming, 16(1979), pp. 228-244.

[5] N. EAGLE 11, A utility criterion for the Markov decision process, Ph. D. thesis, Stanford Univ.,, Stanford,
CA, 1975.

L6 P. C. FISHBURN, Utility Theory for Decision Making, John Wiley, New York, 1970.

[ 7] N. FURUKAWA AND S. IWAMOTO, Markovian decision processes with recursive veward functions, Bull,
Math. Statist, 15(1972), pp. 79— 91.

[ 81 D. P. HEYMAN AND M. ]. SOBEL, Stochastic Models in Operation Research, Volume I, McGraw-Hill, New
York, 1984.

(91 R. S. HOWARD AND ]J. E. MATHESON, Risk-sensitive Markov decision processes, Management Sci,, 8(1972),
pp. 356— 369.

[10] S. C. JAQUETTE, Markov decision processes with a new optimality criterion . Discrete time, Ann. Stat, 1(1973).
pp. 496 —505.

(11] A utility criterion for Markov decision processes, Management Sci, 23(1976) pp. 43—49.

[12] D. M. KREPS, Decision problems with expected utility criteria, 1 : upper and lower convergent utility, Math.
Oper. Res., 2(1977) pp. 45—53.

(13] E. L. PORTEUS, On the optimality of structured policies in countable stage decision processes, Management
Sci,, 22(1975) pp. 148—157.

On the optimality of structured policies in countable decision processes, Research Paper No. 141 Rev.,
Graduate School of Business, Stanford Univ, Stanford, CA, 1975.

[15] M. L. PUTERMAN AND S. L. BRUMELLE, Policy iteration in stationary dynamic programming, Math.
Oper. Res., 4(1979) pp. 60—69.

[16] H. L. ROYDEN, Real Analysis, Macmillan, New York, 1963.

(17] M. SCHAL, Utility functions and optimal policies in sequential decision problems, in Game Theory and Mathe-
matical Economics, O. Moeschlin and D. Pallaschke, eds., North-Holland, Amsterdam, 1981, pp. 357-365.

[18] M. J. SOBEL, Ordinal dynamic programming, Management Sci, 21(1975) pp. 967—975.

[19] ___, The variance of discounted MDP’s, ]. Appl. Probab, 19(1982), pp- 794—802.

(14]




