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A Modified Gradient Procedure
for Multifacility Euclidean Distance Location Problems
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Abstract
An efficient heuristic solution procedure is developed for the minisum location problems. The gradient
direction method and modified gradient approach are developed due to the differentiability of the objective
functions. Suboptimal step size is obtained analytically. A Modified Gradient Procedure (MGP) is presented
and compared with the hyperholoid approximation procedure (HAP) which is one of the best known methods.

1. Introduction

Location problems are classified as either a minisum location problem or a minimax problem. The minisum
location problems are concerned with locating plants, warehouses, or service centers such that they minimize
the total cost of servicing customers. The minimax location problem however, minimizes the maximum weighted
distance to the fixed facilities. Typical examples include locaing public schools or emergency facilities such as
fire stations or ambulance centers. Francis and White (4], Hensen and Thisse [5] and many others [1, 7,
8] developed efficient algorithms for these problems.

In this paper we consider an analytical solution procedure to the minisum location problems. We obtain an
improvig direction and suboptimal step size at each point in the search process. Computational results are presented

for various size of problems. The approach is compared to the well-known g-approximation procedure.

2. Multifacility Euclidean Distance Location Problems

The problem we are concerned with is a general capacitated munisum location problems. It involves interactions
between sources and destinations as well as interactions between sources.

Suppose that we are to locate m new facilites (sources) which will interact with » existing facilities (destina-
tions). Let the new facilities be numbered 1 through m and the existing facilities be numbered m+1 through

m+n. Let u; be the allocation from new facility i to new or exiting facility ;. Also suppose that the transportation
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cost for one unit of the product per unit distance is constant. The problem is to determine the location of
m new facilities so as to minimize the total transportaion cost.
For a mathematical statement of the problem, let X,=(x, y)) denotes the location of the i-th new facility

and P=(a,, b) be the location of the j-th new or existing facility. Also let d(X;, P) be the distance measure

between the two points X and P. Note that P, is a decision variable for j=1, . . . mn and a parameter for
j=m+1l, ..., mta
We may then formulate the multifacility Euclidean distance location problem with X= X, ..., X)) as fol-
lows :
m mtn
minimize f(X):Zo:Z w dX, P) (D
i=0j=1

where d(X, P)=[(—a)*+ y—b)* ]

It is well known that f is strictly convex in E’ if the points P; are not collinear {4]. Hence the minimum
of f is achieved at a unique point X.

In the objective function given above, the allocation #;=0, for j=i Hence, if we define a set J; as
J=j=L ..., mtn jZi} (2)
(1) can be given by

minimize f(X)—‘-f’. T u, dX, P). 3

i=1 J€)

2.1 A Modified Gradient at the Point X

Kuhn [6] used a modified gradient to find a single point that solves the general Fermat problem. We will
apply the Kuhn's modified gradient to this multifacility location problem. The partial dervatives of £X) given
in (3) respect to x, and y; is given by

wx—ay)

VX)) = — i=1,...m
X ; d(X, P)

4

u{y—b)
VA=Y HoF 2
J(X) J ;1 d()(, P,)

Clearly, the gradient at X; is expressed as
RX)=(VfX), VX)) &)

Note that R(X) is not defined if X,=P, for some i and j. In other words, if either any two new facilites or

a new facility and an existing facility have the same location, then d(X, P) is equal to zero, and the partial



derivatives given in (4) are undefined.
Here, let us define ¢(;) as the existing facility ; which coincides with the i-th new facility. Also, we define

a set J, as
L= =1 ..., mtn j#i j7c(D}. (6)

Then, when X,=P., the following modified gradient is considered :

RN —weop e R 1>
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0 if I R1=2u.0 7

where

_y WX P)

=X
€2 d()(l, R) (8
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In Equation (7) the length of R, is compared with the interaction ., and the resultant weight is defined
in the direction of R. Francis and Cabot [3] prove that a necessary condition for X, i=1, ..., m to be
an optimal new facility location is R(X), i=1, ..., m, given in (5) and (7) are equal to zero. The question

of whether the condition is also sufficient remains an open one for the multifacility case.

2.2 An Approximate Optimal Step Size
In previous section we have seen that the gradient at a new facility X is defined in a different fashion due
to the coincidence between the location of new facility X, and the existing facility P. Thus, to classify the m
new facilities we introduce a set I as follows :
I= {i : X,:P,-m} (9)
For X, :&1, the gradient R(X,) is defined as in (4). Also, for X; i€l the modified gradient as in (7).
Here, we will define

RX)=(RX:), . .. . RX.) o

Note that —R(X) is an improving direction at the point X=(X,, ..., X.).

Thus, an iterative solution procedure to search the optimal point is given by

XH=x"—R(X") h=], 2. Gh))




Where A is the step size taken along the direction —R(X") and h denotes the iteration number.

We will now show below that an estimate of the optimal step size is given by

. TIR&X)I®
AT T 12)
Z Zu Il RX) | /d X, P)
In the denominator of Equation (12) the index i and j have the following relationship

a) if 1&l then j& J;

b) if i &1 then j& J;
let dy=—,fAX) and d»=—"» fX) such that d=—R(X). By setting d=(d, . . ., d,) we will solve the
following minimization problem :

minimize X+ Ad)
subject to AeF’

Note that AAX+Ad) is a differentiable convex function, and can be written as

f(X+)\d)=Z‘; T ul (it adi—a)+ (it Ade—6)%1"

o }

By taking the derivative of f with respect to A, we obtain the following expression -

dfiX+ad) £ di(x+Mda—a) +dely. +2d—b) (13)

G T M u;

dx ST [t My —a)?t (it dde— b))

By letting the derivative equal to zero, we get

3y uidy+d) % wldix,—a) +do(y,—b)]
i=1 7 [:(xl+MIIAa/)2+ (y1+}\d12_b/)2]1/2 ol j [(xl+)\di]_aj)2+ (y:'._)\d:z_ b))zjl/z

If we approximate [ e+ Ady—a)*+ (y+Ad.—5)*1" with [(xi—a)*+ (5+b)°]", then solving for A gives

NIE VG, o AT A S 7L LA
53 dX, P) / Hgd(x,pj) (15)

By substituting (4) for the numerator of (15) we obtain the approximate optimal step size X given in (12).



2.3 Hyperboloid Approximation Procedure (HAP)

As discussed previously, the partial derivatives of the objective function given in(4) are not defined of X,=P,

for some i and j. Hence, an alternative minimization problem is employed in HAP as follows :

m ombn

minimize /X, . . . X)=X T ul(x—a)*+ (5—b)*+el™
j=1

=1

where lim AX, . .. X)=fX, ... X

£=0|
The modified objective function AX, . . . ,X,) is differentiable at any point in the plane, and its gradient
can be used in developing an iterative scheme. The procedure which is due to Eyster et.al[2] also uses

an arbitrary small positive perturbation constant. It is known that the iterative procedure converged to the optimal

point for all problems it was used on. However, no convergence proof has been given by the authors.
3. Modified Gradient Procedure (MGP) for Multifacility Location Problems

We propose an iterative scheme to solve the multifacility location problems based on the direction and the

step size we have developed in Section 2.

3.1 Direction of Movement
The direction —R(X) at the point X=(X, . .. X.) is expressed as
RXO=RX), . . . RX,))
where each component R(X,) is defined as follows :

(@) If X.#P, then

i 1——P1
R(x)—g X D)
sendX, P)

(b) If X;=P. then

IR — e
R(X,)={ IR
0, if 1 RI<wuico

R, if 1R Duwa




where

R=T wu,(X.—P)
‘ V€Y d(X. Pj)

3.2 Step Sizes Along the direction —R(X)

In Section 2.2 we have obtained the suboptimal step size as follows :

z I RCX) I} 2

>
Il

2wl RX) 12 /dX, P)
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3.3 Modified Gradient Procedure (MGP)

By using the direction and step size, we here develop an algorithm to solve the multifacility Euclidean distance
location problems.

Initialization : Choose a starting point Xo= (X,

..... X,) and terminating scalar A. Compute f(X*) with given
u; and P. Set #=0 and go to Step 1.

A}

Step 1. Set I={i : X'=P.} and let i=1 and go to Step 2.
Step 2. If #el go to Step 4. Otherwise, if 1&l go to Step 3.
Step 3. Compute

u,--(X,LP)
R(‘X"):Z 2y
i€l d()(: P])
where J=1{j . j=1 ..., m+n, j7 j)

Replace 7 by i+ 1. If m, go to Step 5. Otherwise, if i<m, go to step 2.
Step 4. Compute

h
u;(Xi—P)
R= > —
e dX) P)

where L=1{j :j=1 ..., m+n, ;75 jZcD)

Let
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Replace i by i+1. If ©)m then go to Step 5. Otherwise, if i<m, go to Step 2.
Step 5. Compute the step size A as

z N EAE

A=—y
X ulRX)IN 7dX, P)

[ A

and go to Step 6.
Step 6. Let X"''=X"—AR(X"), for i=1, .. ., m and let X"''=(X""" . ., X"""). Obtain the objective function
value fAX"'1).If fX") —AX" N{AAXY, stop. Otherwise, replace & by A+1, and go to Step 1.

4. Computational Results

the computational experience of the MGP is presented and compared with the HAP. Four different problem
types (mXn) are considered according to the number of new and existing facilities : 2X8, 5X20, 10X50
and 25X100. For each type five independent random problems are generated. The weight u, is generated from
a uniform distribution over [5, 15]. Each existing facility is located uniformly over [0.00, 10.00] in x and y

coordinates. center of gravity solution is employed for the starting location of each new facility.

Table I Computational Results of MGP and HAP

Problem MGP HAP
Type
and Objective function CPU time Objective function CPU time
Number value (second) value (second)
1 15449 0.0105 153.05 0.0852
2 175.24 0.0136 17468 0.0401
2X8 3 212.22 0.0162 211.86 0.1324
4 236.65 0.0108 235.48 0.0896
5 140.66 0.0108 140.29 0.0442
1 1 240.17 0.0518 238.06 0.8487




2 32045 00517 316.03 1.2043
5X20 3 24777 0.0518 24417 0.5175
4 294.32 0.0519 289.72 0.5007
5 25398 0.0518 251.07 0.3563
1 636.15 0.2115 629.17 45462
2 600.39 0.2116 59323 2.9569
10X50 3 435.23 02115 431.18 2.7557
4 638.53 02115 634.22 3.1626
5 64195 02111 633.53 2.9968
1 656.87 1.0426 646.20 20.3739
2 598.23 1.0462 586.92 16.1488
25X100 3 661.65 20285 655.34 24.3931
4 607.80 1.0428 595.33 174116
5 612.61 10418 600.18 24.1729

By implementing the procedure into a FORTRAN code and running on the CONVEX at Korea Institute
of Technology we illustrate the computational results of the MGP. The operating system was UNIX and the
code was compiled using the fc compiler. Table I shows the objective function value and the CPU time in
second. From this table we see that the MGP is undoubtedly fast and compares well with the exact algorithm
in view of the solution quality. For the problem of 25X100, MGP reduces the CPU time by a factor of 10

or 20 compared with the exact approach, with a margin of error in optimality of 1~2%.

5. Conclusion

An analytical approach to solve the multifacility Euclidean distance location problems is investigated. The
improving direction to search the optimal point as well as the step size to the movement are derived both
for the differentiable and nondifferentiable cases of the objective function. The algorithm based on the modified
gradient procedure is developed using the suboptimal step size. It is illustrated that for big multifacility location
problems the use modified gradient procedure is considerably superior to the epsilon-perturbation in terms

of computation time. A comparable solution quality is also guaranteed by the procedure.
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