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Unsteady Wave Generation by an Oscillating Cylinder

Advancing under the Free Surface

D.C. Hong*

Abstract

The radiation problem for an oscillating cylinder advancing under the free surface with a

constant horizontal velocity is studied using the Green integral equation in the frequency do-

main. The Green function expressed in terms of the complex exponential integral, is derived

using the damped free surface condition.

Special attention is given to the behavior of the numerical solution in the vicinity of the

critical Brard number y.=w-u/g=0.25, where w is the circular frequency of encounter,

1% the

advancing speed and g the gravitational acceleration.It is shown that the solution is finite in

the vicinity of y. although the Green function becomes singular at y.. It is also shown that the

computed hydrodynamic coefficients agree well with those obtained from the solution of the

same problem formulated in the time domain.

1. Introduction

The Green function associated with a three di-
mensional pulsating source advancing with a constant
horizontal velocity has been presented by Brard in
194871.. He has shown that the behavior of the far
field waves changes according to a non-dimensional
number y=w-#/g. From his theory and experimental
results, he has concluded that there are two different
regimes of far-field waves separated by a transition
Brard

same

zone located in the vicinity of the ecritical

number 7., Haskind has also studied the
problem but in two dimension[2], It is well known
in both

that the expressions of Green functions

memoirs are singular at y..
In this paper, the Green function associated with

a two dimensional pulsating source is derived using

the damped free surface condition. The present
expression of the Green funciton is also singular at
7e. Since the most probabel cause of the singularity
is the linearization of the f{ree surface condition,
the non-linear free surface effects must be taken
into account to remove the singularity. But the aim
of the present work is to show the behavior of the
linearized solution in the vicinity of ;. to provide
correct reference to existing or future non-linear
solutions. It can also be compared with the results
computed in the time domain to confirm mutual

agreement 3.
I1. Formulation of the problem
The fluid is assumed to occupy a space D bounded

by the wetted surface S of an immersed cylindrical

body and by the free sunface F of deep water under
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gravity. The body performs simple harmonic oscilla-
tions of small amplitude with circular frequency o
about its mean position which is assumed to advance
with uniform horizontal velocity #. Cartesian coordi-
nates (x,y) attached to the mean position of the
body, in the
undisturbed free surface above the body and the y

are employed with the origin O

axis vertically upwards. The plane xoy is perpen-
dicular to the generatrices of the cylindrical body in
order that the problem may be treated in two
dimensions.

With the usual assumptions of an incompressible
fluid and irrotational flow without capillarity, the
fluid velocity # is given by the gradient of a velocity
potential @r(x,,t). To find the potential @7, the
boundary conditions on S, on F and at infinity must
be known. Brard has avoided the difficulty due to
the ignorance of the condition at infinity by intro-
ducing the notion of the almost perfect fluid cha-
racterized by a friction force per unit volume equal
to -¢i where ¢ is an infinitesimal positive real
number. Following Brard, the governing equations

for ¢r can be given as follows:

FiPr=0 inD (2.1
a.djT =D ,7 on S 2.2
on
oy, L 391 o TOr _

Or g 7 Je o =0 on F 2.3

Here it denotes the normal vector directed into
the fluid region D. Tt should be mnoted that the
problem is linearized assuming that the square of 7
is small enough to be neglected compared with
other quantities. In(2,2), 7. denotes the entrainment
velocity.

T M) =0 +d181+ dofa T dsfa x O M, MeS (2.4)
Here a;(j=1,2,3) denote the displacements due to
surge, heave and pitch and Oy the center of rotation
of the body.

Since 7, is composed of the steady velocity # and
oscillating velocities ¢;(j=1,2,3), the potential &r
can be decomposed as follows:

Pr=0o(z, ) +0(z,3,8) (2.5)

Here @, is the steady potential of the stationary
lee waves.

Assuming that Po, P@ and 4; are all small and
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comparable to each other in magnitude, the coupling
effect between @ and @ can be disregarded in this
for &
and @ can be solved separately. In this paper the

linear problem. Then each of the problems

problem for ¢ only is treated.
Since the cartesian coordinates employed here are

attached to Sy, the body surface at its mean position,

the normal vector # on S and the time derivative
4

2 can be expressed as follows:

ot
Ays=# st as8s X7 s, (2.6)
o _ 9 .5
et raa r Q2.7

Substuting (2.6) and (2.7) into (2.2) and (2.3)

respectively, the boundary conditions for & can be

found:
o . . -y
Tn = Lailit (dy—uay)értdady x O M)+ on Sp
2.8)
o ., o' 2 0% 00 oQ
50 M amar T e T8y, To gy
—eu%% =0 on F (2.9)

Considering the condition (2,8), it can be found
that @ takes the following form:

3
0=R.{—i0}](a} +ia*)g; e

—u(af +iaf*)geiet | (2.10)
with

¢;=¢7+ig)* .11

a;=R. ((a*+ ia**)einn (2.12)

Here af+-iaf* represent the magnitude and phase
of the displacement due to the oscillation in the
jth direction and ¢, the complex valued elementary
potential.

Taking into account of formulas (2.8) and (2.10),
the body boundary conditions for ¢;(j=1,2,3) can

be found:

_‘%’_:é,«r on S for j=1,2 (2.13)
9% =(é xO—_M) i S
5, =(@XO0:M)-#  on S (2.14)

II1. Construction of the Green function

One can solve the present boundary value problem

by making use of the Green integral equation. The

Journal of SNAK, Vol. 25, No. 2, June 1988



Unsteady Wave Generation by an Oscillating Cylinder Advancing under the Free Surface 13

following expression of the Green function has tion in the complex plane z=x+iy will be given.

already been presented by Hong{4]. Here, a brief In order to simplify the calculation, the following
description of the process to derive the Green funec- expression of a complex potential is adopted:
gy e q* z—z .
F(z, z ,t)——z?cos wt log-z—;»s,-%—f(z, 2'3t) (3.1

Here, the function f is a complex potential which will enable the complex potential F(z,z’;¢) to satisfy
the free surface condition issued from (2,9):
92 0? 0% .0 g 0
Ry Lo —2uP  vur P 4ig 0 el ; =
([~ ey e sy e 4, e JFG "’"‘)}[,20*0 (3.2)

Expressing the function f in the form of a Fourier integral

Y — 1 i oY ,—ikz
£z, z’,t)_~;§0¢<k,¢,z Ye itk (3.3)
the equation (3.2) becomes
2 ~
[aaﬁ —(2iuk—+¢) g[ +gkvu2k2+ieuk}¢:—gq*e"”'cos wt (3. 4)

The above ordinary differential equation for the Fourier transform ¢ admits the following particular

solution:
R o ) .
¢:¥g~g— e (emiet /Dy +-ett/ Dy) (3.9) Fle, 28)=filz, =" )+ folz, 2758) (3.6)
with,
Dy=Dy —ic(uk—w), DY=(uk—w)*—gk (3.5a)
Dy=Dy —ie(uk+w), Dy=(ukt+w) —gk (3.5b)
Substitution of (3.5) to (3.3) yields

o = .
file g0y = 8ot [ ek Dydh (3. 60)

* o
Flz )= B o [ Teibes) Dyedk - (3.60)

)

Decomposing 1/D in two fractional equations, the integrals in the equations (3.6a) and (3.6b) become,

1 (rjesp —iK(z—g)]  expl—iK(z—27)] -
L= «/1—%47—50{ K—(K;+id) K— (K, +id) }dK (3.7a)
1 (epexpl—iK(z—#)]  expl—iK(z—2)] ! .
L e I SR TS Sy ¢ ) Jak, 1y (@.70)
Here, the following non-dimensionalyzation is introduced:
Z=z/L, K=kL, d=uf gL
G=w vL/g, y=ad=uw, L=characteristic length

The non-dimensional parameter -=3,8 being positive, in the denominators of the integrands of Iy and I, ig

the product of ¢ and the sign of (zk+w) in the vicinity of the roots K, K;, K5 and Ky of Dy and Dy’.
Ki=T1-+2;+ (=1 V1547 1/24a%, i=1,2 (3.8a)

Ki= 12+ (—1) V1 —471/2a%  i=3,4 (3.8b)

It should be noted that I’ posseses alway two distinet real roots K and K,. But Dy can admit two
distinst real roots, double root or two complex roots according to the value of y greater, equal or less than
0.25, the critical Brard number y.. However, as far as the damping parameter is taken into account, D,
and D, posses always two distinet complex roots whatever the value of y is. So, when y is equal to 0. 25,

the integral I, takes the following form:

1 (7f expl-iK(z—2)" _ exp —iK(z—&) |,k _1 3
e LUk ) S L @9
Ke=(1-2)/22*=1/ (.10

Sinee the integral in (3.9) does not vanish, the value of I at 7. will diverge when & approaches zero.
However. the formula (3.9) shows that the value of I, at y. when ; approaches y. from the domain ;> is
KUBFEALER Aol HA254% HT2%F 19884 64
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identical with the one from the domain y<(y. as far as the artificial damping parameter is retained.

According to the table in the appendix, I, and I, take finally the following form:

L= e (L[, (L) 42 — e (E () 2T

V1+4y
L et 1,1
== (e[ €1(80) +2in) — %€, (L)), <9, 1%
L= V1—4y
e 1 ; 1
! 7—1:_'—4T—Ee“E1(C4)—e‘3E1(C3)J, =y
with,
gi=—i K;(Z-2"), 7=1,2,3,4
By using formulas (3,11) to (3.13), one has

N q* Z—Z
F(Z, Z’,t)_—z; (cos wt log o

Now, let us consider the farfield behavior of waves generated by a pulsating point source in

+Ile—iat+Izeimt)

translation. By making use of the properties of the complex exponential integral
E\({)—0 for [§|—oo

« -0 for |{|—o and L.({)>0
&)= { .
——2fr for [{]—o0 and F,.()<C0
one can find the following expressions of the Green function at infinity:
(. & e—iwt c . elwt . ,
iq%| (e o) = el for (X—X")—>—co
F(Z,Z'; )lra= gj [Jl 7 V1=dr
| igfeivieta/ /1 —4y for (X—X")—oo
(gt = (tmel)  for (X—X/)—s—roo
v1+dy

F(Z,Z'; Dlrsr=
0 for (X—X")—»o0

Denoting the celerity of a wave related with K;(j=1,2,3,4) by C;(4=1,2,3,4), one has

€= — YT FL (o —e Vs 11 for (X—X')——ec0, fr
2r 0] 2

Cr=uYIEIr L (- £ Jitdr =1 ) for (X—X")——o0, ¥y
2r w 2

Crmu 1T Sl £ A ir 71 for (X—X")—00, 7<r
2r w 2

Comy = V1=dr (:gﬁ 1— Vi—4y ) for (X—X")->—o0, r<re
2r &) 2

The above formulas show that there are four waves for y<y. and two waves for >7..
By using the expression of I at 7. given by the formula (3.9), it can be shown that
C3:C4:2u for r=7vc

3.1D

(3.12a)

(3.12b)
(3.13)

(3.14)

uniform

(3.1%)

(3.16)

3.17)
(3.18)
(3.19

(3.20)

3.2D)

It signifies that at y., the total amount of energy influx by the K; wave is carried away by the K; wave.

So the resonance will not occur in the fluid contained in the region bounded by the free surface and a

space-fixed geometric surface. But the energy of K; and Ky waves cannot be radiated from the source since

their energy transmission velocity equals the steady advancing velocity of the source. In consequence, the

resonance will occur locally around the source which is in steady translating motion accompanied by small

oscillations. But it is not physically acceptable and the linearized solution fails at r..
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1V. Green Integral Equation

Using the expression of the complex potential given by the formula (3.14), the Green function G(z,z’)
is defined as follows.
G(Z,2)Y=G*(Z,2")Y+iG**(Z, Z") 4.1)
ROEKZ,Z's £))=R,.G(Z,Z e "**]-¢* (4.2)
The Green function G(z,2’) is complex valued in accordance with the elementary potentials.
Applying Green’s theorem to one of the elementary potentials and the Green function in the fluid region

D, a Fredholm integral equation of the second kind for the potential can be obtained:
¢(Z) n 0G(Z2,Z") Lo _ 0¢(Z") , , _ v
HD_f L) asy= | 2D Gz, 274, Pes, (4.3)

Substituting the boundary conditions (2.13) and (2. 14) in turn into the above equation, it can be solved

with the aid of the discretization. Then using the Bernoulli equation, the pressure on S, can be obtained:

_ too oo /
p=—o{ 2. ur——a}-—> (4. 4)

Then the hydrodynamic pressure forces and moment due to the unsteady potential can be obtained as

F :~js° pidS on S, (4.5)
ﬂf‘js POMxi)dS, M=S, (4.6)
Using the expression of @ given by (2.10), the following explicit form of F and M can be found:
3
Fi=—pL*S(M,d,+0Did,),  i=1,2,3 4.7
=
or
3
Fi s gLY iy o ied o, i=1,2,3 (4.8)
=
with
Fy=25,2M/L and F;=F-é,, i=1,2 4.9 V. Numerical Results and Discussion

Here, the non-dimensional coefficients M;; or p;

are known as the added-mass coefficients and D;; or The added-mass and wave-damping coefficients of

%, the wave-damping coefficients, a circular cylinder completely immersed in water of

>

infinite depth are computed (see Fig. 1).

In Fig. 2, the surge (or heave) induced surge
(or heave) added-mass coeflicients are presented
with other numerical results for #/ +vgR=0.25. The

results of Kim are obtained from the wave-damping

3 > coefficients computed in the time domain using the
Kramers-Kronig relationship. As shown in this
figure, the present results agree well with the results

of Kim and there i= no singular behavior in the

vicinity of ;. It scems that there are some
numerical errors in the results of Park for
0. 6w vR/g<1.0.

Fig. 1 Coordinate systems In Fig. 3, i and 7y are presented and compared

KEREEGE 258 K2R 10884 64
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with the results of Hwang and Kim computed in

the time domain for #/ vgR=0.4. They agree well

with each other in this case too. But the present

results show that there is discontinuity in the slopes

of £ and 2 curves at .. In Fig. 4, the 4 and 2
Ayx
et
o4
.
L '.,' 2/ VER=0.25
L o \ k=135
L @ present results
F —— Kim Y.J. 752
I P Park SHL 167
PO o
r I
. 5P |
" |
| 3
|
[ !
. . | i

0.3 L0 1.5 2.0

Fig. 2 Surge induced surge added-mass coefficients

T i 1 1 T
2.5
U; vﬁf 0.4
=20
- present results
2.01r
o @ Hwang ot ol
1.5F
@
1 0g- -
®
0. 5
Y

Fig.

w*Rfg
3 Surge induced surge hydrodynamic
coefficients

I?E
L 1 ] I i

L .
0.25 0.29 0.40 0. 44
w'Rig
Fig. 4 Surge induced surge hydrodynamic coefficients
"y T T v T T T T T
0.20¢- U7 VgR=0.7071
------ A=l
P
’
h=2.0 ’
’
0.15p .
0. top~
0. 05f
0
—0.05F
-0.10 1 . 1
0.07 0.1 0.12 0.13 0.17
o*Rig

Fig. 5 Surge induced surge added-mass coefficients
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0. 0% (LN (12 S T ) uolv

WRE
Fig. 6 Surge induced surge wave-damping
coefficients

curves are presented in a greater scale to show
that the values of » and 2 remain finite in the
vicinity of y.. Here y and i curves for A=1.1 are
also presented. In Figs. 5 and 6, x and 2 curves
for h=1.1 and 2=2.0 are presented for u/+gR=
0.7071. The values of 4 and 1 are again finite in
the vicinity of y. in spite of the discontinuity in
their slopes. The curves in Figs. 4 to 6 show that
the changes at y. for £=2.0 are more abrupt than
those for z=1.1. Since the discontinuity is entirely
due to the contribution from Kj; and K, waves, the
changes across y. will be great or slight according
as the contribution from K; and K, waves is greater
or smaller than one from K, and K, waves.
In conclusion, the following facts are expected:

the

introduction is confirmed numerically by showing

1. The proposition of Brard presented in
the discontinuity in the slopes of x and 7 curves at
Te.

2. The numerical solutions remain finite in the
vicinity of y. where (y—7y.) is of order 10,

3. The non-linear analysis is required to obtain
the exact solution at y. where the linear solution

fails.
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Appendix
The integrals in the expression of the Green
Function can be represented by
— (e
1K, W= [T dh RS0 (ALD)
with
W=u-+iv=ce?, [0]<x/2 (A.2)
Ko'—‘ko‘i‘iﬂlo, 7?1()#0 (A 3)

It is well known that this type of integral can
be evaluated by using the residue theorem with a

suitable contour I". A priori, I" can be taken in the



18

first or fourth quadrant of the complex plane K,
K=t—im=ze™, |a|<z/2 (A.4)
The contour consists of the positive real axis OA,
a circular arc of radius R tending to infinity AB
and a straizht line returning to the origin BO. The
line BO makes an angle = with the positive real

axis. Considering that

—kW=—+c"cos(f+a)+isin(f-+a) (A.5)
the value of x should be
r=-—4, f=tan"'v/u (A.6)

Therefore the contour I” will be taken in the first
or fourth cuadrant according as the sign of & s
negative or positive in order that the integral may
converge at infinity.

After some mathematical operations and making

use of the following formula

n ot (et _ .
50 P dt—eSj‘:——t—«dt_-e E(Q), largZi<=m

D.C. Hong

(A7

the integral can be evaluated using one of the

following expressions according to the values of &,
and mg:

Table of 1 (K, W)

i

B0 | k=0 | B>

mo<l0 | FEL(W) [e“’El(W) iewsl(m
mo>0 | VE(W) | VE(W) | € (W)+2ix)

Here E,(7) is the complex exponential integral
and €;(Q) is the modified complex exponential inte-
gral defined as follows:
£, = {El(‘:) . for I.(5)>0
E (D) —2iz for 1.(5)<0
The numerical computing techniques for

E(D

can be found in the reference (7

Journal of SNAK, Vol. 25, No. 2, June 1988



