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Finite Dimensional Compensator Design for a Class of
Infinite Dimensional Systems
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Abstract~This paper is concerned with a design procedure for constructing finite dimensional com-
pensators for a class of infinite dimensional systems. Basically, this procedure consists of decomposing
the state space on the basis of its modes and utilizing well-known finite dimensional algorithms
for constructing observers and state feedback control laws. The finite dimensional observer dynamics
is modified to account for the effect of the residual modes so as to achieve the stability of the closed

loop system asymptotically.

1. Introduction

The control of infinite dimensional systems des-
cribed by linear partial differential equations or
functional differential equations presents some chal-
lenging features that are absent in the finite dimen-
sional situations, Although the stabilization by state
feedback is an interesting problem in itself, one can
never observe the whole state in infinite dimensional
systems and hence it is necessary to investigate the
stabilization by output feedback. The theory of li-
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near quadratic regulators and observers for infinite
dimensional systems provides a procedure for con-
structing a controller, which is in general infinite
dimensional itself. However, the implementation
of controllers of infinite order is not feasible in pr-
actice, and hence the problem of stabilizing infinite
dimensional systems by dynamic finite dimensional
controllers has gained intensive interest in recent
years.

In constructing controllers for infinite dimensional
systems, the most popular approach used to consist
of replacing the infinite dimensional system by finite
dimensional reduced order model and applying stan-
dard finite dimensional techniques to obtain a con-
troller for this reduced order model. However, it
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has been shown that under certain circumstances,
the interaction of the controller with the unmodelled
dynamics of the system destabilizes the closed loop
system as a whole.” Some results on the existence
of finite dimensional compensators have been estab-
lished in the absence of this unfavorable interaction,
6. 7. 8) but this assumption is severely restrictive
and unrealistic. Also, some existence results have
been discussed based on the closeness of the reduced
order model and the actual systern.

In®, Schumacher presented a design procedure
for constructing finite dimensoional compensators
for a class of infinite dimensional systems under
some assumptions including finitely many unstable
modes and completeness of eigenvectors. This app-
roach has been extended to include the systems with
unbounded input and output operators by Curtain’
Wand Curtain and Salamon,” Some results on finite
dimensional compensators for some class of infinite
dimensional systems have been derived recently using
frequency domain methods, 2" 13 14}

In the present paper, we propose another approach
to the design of finite dimensional compensators.
The idea underlying this approach is to modify the
finite dimensional observer to take into account the
effect of the residual modes of the system, The basic
idea is explained in the next section. In Section 3,
we set up the problem in a rigorous way, The main
result which establishes the existence of finite di-
mensional compensator is given in Section 4. A sim-
ple example of a class of infinite dimensional systems
for which the results in Section 4 can be applied
is provided in Section 5. Some final remarks follow
in Section 6,

2. Preliminaries

In view of the complicated technicalities and the
assumptions involved in establishing rigorous resul-
ts, it seems useful to review th previous approaches
and to motivate our approach to the compensator
design. For Banach spaces X and Y, we denote by
L(X, Y) the space of bounded linear operators from
X to Y and write L(X) for L{(X, X), We denote
by |.| norms of vectors and operators.
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We consider an infinite dimensional system of
the form

< oy

(t) =Ax(t) +Bu(t)
(1) =Cx(t) 2.1)

on a Banach space X with finite dimensional spaces
U=R™M Y=RP, where A is the infinitesimal gene-
rator of a strongly continuous semigroup S(.) of
linear bounded operators on X, B & L(U,X) and
C e L(X,Y).

We assume that with the decomposition of the state
space X=X, ® X, where the subspace X, is finite
dimensional, the system (2.1) is also decomposed
correspodingly with respect to this decomposition

Xt An 0V xalt B,
= (0 L ko e
oy [ xalt)
vl = (Cn € <xm) >
on X, @ X,, where A, is a bounded operator on Xn,
and A, generates a strongly continuous semigroup
S.(t) on X, which is exponentially stable.

Earlier results on the existence of finite dimens-
ional compensators have been established on the
basis of zero spillover assumption, that is, B,=0
or C,=0 7% A design procedure which avoids
the zero spillover assumption has been proposed
by Schumacher  and further pursued in *-'”’, This
approach basically consists of finding an infinite
dimensional observer and state feedback to form
an infinite dimensional compensator which stabilizes
the system (2.1) and then finding a finite dimen-
sional one which is close to the stabilizing infinite
dimensional one using a certain parametrization of
compensators. In other words, they first find ex-
ponentially stable pairs A + BF and A + GC and
then approximate G by G using generalized eigen-
vectors of A + BF to show the existence of a finite

dimensional subspace V such that Image Gcv
and (A + BF) V C V. In addition to usual spectral
decomposition and spectrum determined growth
assumptions, their construction necessitates the
assumption that the generalized eigenvectors of A
+ BF is complete in X for some F € L(X,U) such

that A + BF is exponentially stable,
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With the decomposition in (2.2), it is well known
in infinite dimensional system theory that the pair
(A,B) is exponentially stabilizable if A, — BrF is
stable for some F & L(X,, U). In our approach,
we first construct a finite dimensional observer for
estimating state xq(t) in X, and an F & L(Xp, U)
such that A,~ BpF is stable

2(t) =Anza ) +Gy (1) =3 (1)), 2a(t) €Xo,

u(t) =Fzn(1), (2.3)
whére &(t) is to be determined from zn(t) later.
With control u(.) in (2.3), we have

200 =S (3ot [ 5,0 Balidr, 2.4)

0
where xn:x(m@xon xnnexm xurexr
If S,(t)is such that
IS (1 [=ae®, a=1, <0,
then we have from(2.4) (2.4}

x,(t)>—A"Bult) as a—--
for t>0.

Hence, for sufficiently small «, we choose

VA(t) :annu‘)*crArlBrU(T) (2 5)

= (CnvCrAT ]BTF)Zn(T).

We will show this reasoning leads to the existence
of finite dimensional compensators under some as-

sumptions,
3. Preliminaries and Assumptions

We consider systems of the form

x(t) = Ax(D)+Bul(t), x(0)=x, 3.1

y(t)=Cx(t)
on a Banach space X with finite dimensional spaces
U=R™ Y = R", where A is the infinitesimal gene-
rator of a strongly continuous semigroup T(.) of
linear bounded operator on X, B ¢ L(U,X) and C
& L(X,Y). Throughout this paper, we consider solu-
tions in the mild sense, namely, as solutions of the
associated integral equation

X(t)=T(t)Xo+£l7‘(th)Bu(’f>dr_ (3.2)

As a measure of stability for a semigroup S(.)
on X, we use the growth constant w, which deter-
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mines the exponential decay rate of |S(t)] and
is obtained by the formula

w =lim (1/$)log| S(t)].
Lo

The semigroupis said to be exponentially stable if
its growth constant is negative, We suppose that
a desired minimum degree of stability has been
specified a priori by a growth constant p.< 0. A
semigroup is called simply stable if its growth con-
stant is smaller than o We will also say that the
pair(A,B) is stabilizable if there exists an F &€ L(X,
U) such that semigroup generated by A + BF is
stable. A pair (C,A) will be called detectable if the
pair(A’, C*) is stabilizable,

A key to the stabilizability is the following decom-
position of the state space based on the modes.

(AO) Spectrum decomposition assumption : The
spectrum o (A) of the operator A contains a boun-
ded part ¢ n(A) seperated from the rest o .(A)
= 0(A) -0 n(A) in such a way that a rectifiable,
simple closed curve T can be drawn so as to enclose
on open set containing on(A) in its interior and
or(A) in its exterior,

Under (AQ), we obtain a natural state space
decomposition

X=X@X,. X,=1X X,= (-
Il = (2xi) [ (sI-4)ds

JT

A, 0 T.(2) 0 ;
A= _ \ . \
‘ (0 A, ) rin = 0 T, (1) ) (8.5)

mXx (3.3
e LX) (3.4

B:(B") C=(CIC,)

where A, = A|X, is bounded, A; = A|X, is the
infinitesimal generator of the semigroup T (t) =
T(t)X; on Xy, Ta(t) = T(t)|Xn, Bo =1 B, B =
(I -IT)B, Ch=Cand C;=C(I-II). Further-
more, J] and (I-II) commute with A and T(t).
We need the spectrum decomposition assumption
in the following form,
(A1) There exists a sequence { £n}, 05> p,>p,
>+, Pp—>-oo, such that the spectrum decomposi-
tion assumption (AQ) is satisfied with o,(A) for
each n > 1, where
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on{A):=c(A)Nis. R. sZpnl

This again yields the decomposition of the state
space

X=Xo® X, I Xp=11,X X;n=(I-1,X (3.6)

with the projection II, corresponding to on(A).
Correspondingly, we write

{40 s (Tal?) 0
4 <0 A,n). e <0 Tm(t)>

B,

TN/,

As in the finite dimensional situations, we need
assumptions on the stabilizability of- the pair (A,
B) and detectability of the pair (C,A). In the present
context, these can be expressed in the following way.
In the following, we write Ay, By, Cu, IIu for A,
B, C, II, and X,.

(A2) The subspace X, is finite dimensional for each
n > 1,

(A3) The pair (A, By) is stabilizable and the pair
(Cy, Ay) is detectable,

We note that Ay, By and Cy, are finite dimensional
operators, and hence we can rely on the familiar
concepts of stabilizability and detectability in finite
dimensions,

With respect to the above decomposition, we need
the following technical assumptions.

(A4) There exists a constant cy such that|II,|
<eg,n> 1,

(A5) l Ten(t) | < Mpe”™t for a sequence {dn}, Ps
>8,>8,>-+, such that M, /8,0 as n—>oo,

For easy reference, we quote the following two
lemmas which will be used repeatedly.

LEMMA 3.1 Suppose that A, and A, are genera-
tors of semigroups on the Banach spaces X, and
X. respectively, with growth constants «, and w,,

Suppose that A; ¢ L(X,,X,). Then the operator

on X, @ X, defined by

A, A,
generates a semigroup with growth constant equal

to max (w,, w,).
LEMMA 32° Let A be the infinitesimal generat-

D8t A AAHS 2 o XY Ao A

or of a semigroup T(.) on the Banach space X sa-
tisfying | T(t) | <Me®. Let B & L(X) and let S
(.) be the semigroup generated by A + B, Then,

IS(t) |§>Me‘0~M\But

4. Existence Result

With the preliminaries in Section 3, we proceed
to prove the existence result.

To the system(3.1), we add the compensator of
finite dimension

2n(8) = Auzat) + Bau (1) + Gy (1) — 5(8),
2,(1) eXn,
u(t) =Fz,(1) (4.1

where y(t) is to be determined.

We define
zrn(t) :*An;lBrﬂu(t)
:“ArnﬂBrann(t) (4 2)
and write
en(t) :xn(t)‘zn(t)‘
er(t)‘:xrn(t)“z'rn( t) (4 3)

As motivated in Section 2, we choose

&(t) = ann( t) + Crzr(t)
= ann( t) - C*rnA rn'l BTTLFZTL( t) (4 4>

Then, we obtain

y ( t) “3" (t) - Cx(t) - [ann( t) - Cern(t)]
= Cnen( t) + Crneml(t) (4 5)
From equations (3.7) and (4.1), we can show
€nlt) =An2a(t) —Gly (D —3 (2))
= (A= GCr e4(t) + GCrnenlt) (4.6)
Also, we obtain
€ rn(l)
=AT7l[xT7l( t) - ZT‘VI,( t)]+ATNIBTﬂFiATLzﬂ( t) +
Bau(t)+Gly (1) —y (1)) 4.7

= (Arn+ ArﬂlBrnFGCrn) em( t) Jf‘Arn‘lBrnF(An
+ BnF) 20(1) — Arn ' BraF (At BoF— GCr) e, D)
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With control u(.) in (4.1), we have
xn( t) = (Aﬂ+ Bnm xn( t) VBnpjen( t) (4 8)

From (4.6), (4,7) and (4.8), we obtain the following
equation

en(t) en(d)
Zn(t) =Ae(xn(t)
€rn( D)/ el
Ap—GCn
Ao= ( - BoF
—Ar7 BinF(Ant B.F—GCy)
0 ~GCrn
Ant+ B.F 0
Arn BenF(Ant BoF) Apnt A BiFGCoa

4.9

We also note that from the relation

eald) | I 0 [z.(1)
xao(D | = 0 I 0 |x.(1) J
ern(l) An'BinF 0 T/ \xp:(D
{4.10)
we obtain
2a(0) —1I I 0
(xn(t) = 0 I 0
Zrall) ' B F A B F I
ea(t)
xa(8) )
Xra(l) 4.11)

For n > 1, we have the decomposition of the
spectrum on(A) into oy(A) into oy(A)N{on(A)—
au(A)}. With respect
%a(A), we have the decomposition of the space X,

Xn—_—XueB Xsn

to this decomposition of

Correspondingly, we write

u B,
An= (A 0 ) Bn:: ( . ) Cn':’ (cu. Csn)
0 A.s‘n » .

(4.12)

With the assumptions and notations before, we

can show the following result on the existence of

finite dimensional compensators for zero spillover
case,
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PROPOSITION 4.1. Under the hypotheses(Al),
(A2) and (A3), suppose that Brn=0 or Crn=0 for
some n>>1. and that T(t) | Xen® Xy, is stable, Then,
there exists a finite dimensional compensator for
the system(3.1),

PROOF. For case where B;n=0, the one-by-two
lower left block of Ae becomes a zero block. When
Crn=0, the two-by-one right upper block of A
becomes a zero block, By the assumption (A3), there
exist FiyeL(Xy,U) and GueL(Y,X,) such that A -
ByFy and A,-GyCy are stable. Choose FeL(X,®
Xsn, U) and GeL(Y, Xy ® Xqn) as

F=(F, 0), G= (ﬁ) (4.13)

Then, the two-by-two left upper block becomes

stable and A, generates a stable semigroup. Hence,
we have

[(enl) 2alt) xmlD)) |Sce” [(eal0), x4(0)
xen(0)) |

for some ¢ > 1, p < ps
From the relation (4.11), we conclude that

| {za(®), xa(D),
Zrm(0)) |

Zrn( ) Iécl et |(z,(0), Za(0),

for somec, > 1. / / /

Now, we prove our main existence result.
THEOREM 4.1. Consider the system (3.1) under
the assumptions (A1) — (A5). Then, there exists a
compensator of the form (4.1) which has a finite
order and has the growth constant less that ps.
PROOF. By assumption (A3), there exits FyeL(X,,
U) and GL(Y,X,) so that Ay + ByFy and A,
— GyCy are stable with growth constants p, e
less than ps, respectively. Choose F eL(X,,U) and
GueL(Y,Xn) as in (4.13) for n > 1. With this choice
of F and G, we can see

L [FuGy 0
kG :( 00 ]
The assumption (A5) implies that | Arn™ }< Mn/
|&n
[Ara! BrnFGCrnl < (My/|60]) | Bl | FuGul | C) cu
(1+cp)®

, and hence we have the estimate



BRRE R 37% 6%% 1988F 68

which goes to zero as n—oo,

Therefore, there exists a sufficiently large N so that
for all n > N, the semigroup generated by Am—
A 'BrnFGCrn has the growth constnat g, smaller
than gs.

For n > N, we can show

An— Gcn=( A= GuCu = G"C")
0 Agn
Auwt B.F =<A“;:f;"f" j) (4.14)
We let
Ae‘=( A—GC 0 )
—B.F A+ B.F 4.15)

Then, the growth constant of Ae, denoted by pe,
is equal to the maximum of ¢4, pg and the growth
constant of Agy, which is smaller than g5, From (4.
14), (4.15) and the assumption (A4), we can see
that the semigroup Te,(t) generated by Ae, satisfies

[Te (D) | =M, &

for some M, which can be chosen independent of
n > N,

Let Ae, be the block operator obtained by equating
the one-by-two left lower block of Ae to be a zero
block. Then, by Lemma 3.1, the semigroup Te,(t)
generated by A, the has growth constant pe,
Pex=max|{fr,pe}; Which is smaller than ps, Also, from
(A4) and (A5), we can see

| Ter(t) | gMzepe’t

for M,;>1 which also can be chosen independent
of n > N.
From (4.14), we have

F(An+ BnF) = FuAu+ FuBuFu.
FGC"Z (anGansm anGsncu.)

Hence, it follows from (A4), (A5) and (4.15) that
the norm of one-by-two lower left block of Ae can

{4.16)

be made arbitrarily small, Since Ae, generates a
semigroup with the growth constant e, less than
Ps, it follows from Lemma 3.2 that for suffieciently
large n > N, the growth constant for A, is smaller
than ps, and hence stable. From the relation (4.11),
we conclude that the closed loop system with com-

& Xt A|ARE 23 8 XY 24Tiel 4|

pensator (4.1) is stable, ///

REMARK 4.1. With respect to the decomposition
Xn=Xu ® Xsn, we can write the equation (4.1) for
the observer as

( zu( t) ) . ( Au_ Gucu+ Gucr;llBrnFu - Gucsn)
Zsn(t) 0 Asn

A8 (5
+ i+ (

(i) + S (5o

Hence, we can see that zg,(t) satisfies the same
dynamic relation as xgn(t) and the dynamic relation
for 2u(t) has been corrected to account for the effect
of the residual modes xm(t) by an additional input

term from z¢n(t) and the modification of the system
matrix

5. An Example

The conditions (A1) — (A5) are fairly general and
are satisfied by many infinite dimensional systems
of interest. As for a specific example, we consider
the system discussed in (4], Let X be a real, sepe-
rable Hilbert space with inner product <..> and
norm |. |. We consider

x'(t)=Ax(t)+§b,ul(t) (5.1)
y(D=0(c, x(2)), {co x(B){Cp (D))"

Where by e X,1 <i<m,¢eX,1<i<p,and
the generator A of a semigroup T(t) is a self-adjoint
operator with compact resolvent. In this case, the
spectrum o(A) is just point spectrum o,(A) with
real eigenvalues {#, i > 1}, wy > 14 > g, > ., for
some finite real w, and the corresponding eigen-
manifolds are finite dimensional, Furthermore, the
eigenvalues are isolated with no accumulation point,

| 74 | —oo. Hence, there are at most finitely many
eigenvalues {4, j=1,2 --- J} which are greater than
or equal to the desired growth constant ps, each with
finite dimensional eigenspace, A fundamental fact
in the present case is that the eigenvectors {gy, k
=1, 2, .., 1, k > 1} are complete in X, where 1,
is the multiplicity of the eigenvalue 4, The condition
(A1) is satisfied by taking #n = #:n1, n > 1. Then,
we have

419



X=Xyt Xrn
Jen-1 1§ el
SR I ERIREICED HEER IR
where X, = span of {5, k = 1,2, ..1, j = 1, 2,
wod+n-1} is (r,4r.4+. 41,0y} —dimensional, We
also have

T3

Ax= S u X (% $x) b

K=

={xeX.: ZquZJKx $xr|2< oot and
Jo1 = |

T

Jon-t
AnXn= _Z:l ,UJkZ‘: (Xn biw) Do xn€ Xn,
=

. -
ArnXrn= F"H.v;\lxrna O Gin Xrn€Xip

The semigroup T(t) on X generated by A is

T(hx= 3 e>: (X, $ox) bo

i Jen-1 7,
Tz~ 5 €' X (xn $u)bir. Tn€ X
= K

o T
Ti(Dxm= 20 e““k;\/\xm Pix) Pine Xen €Xpn

j-Jdn

Hence, \Tm(t)l < e%:nt t > 0, forn > 1, with
1/ #n—0, and the condition { Ab) is satisfied, Since
A is self-adjoint, [I, is an orthogonal projection
operator onto the subspace Xp, for n > 1, and hence
] OHn| =1forn > 1 therefore, the condition
(A4) is also satisfied.

It remains to check the conditions (AZ2) and (A3).
In the present case, Xy, = span of {¢x, k = 1, 2,
ooty j =12 .1} is N-dimensional, N: = r,+r,
+...+r,. Then, the projection (Cy, Ay, Bu) is similar
to the triple (Cy, Ay, By) where A; e RNV, By e
RNxm . & RPXN are defined by

Af:diag;ﬂh ety Mz, s Moo M T ot
<¢n» b1>"'<¢’n, bh.

B~ <¢11,. b|>"'<¢1r‘. by
<¢Jr_,. bl>"'<¢.]r, bN\'
<Ch ¢11>”'/\Clv & ,>"'<C1, ¢11>"'<C\, ¢J7‘l,>
{Ca P -{Cn ¢xr.>"'<Cz, ¢.11>"'<Cz, ¢JT.,>
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Hence, if the finite dimensional system z(t)= A¢
z(t) + Bpu(t), y(t) = Cz(t) is stabilizable and
detectable in the familiar finite dimensional sense,
the conditions (A2) and (A3) are satisfied and a
finite dimensional compensator for the system (5.
1) can be constructed following the procedure in
Section 4.

We note that the self-adjoint operator with com-
pact resolvent often arises in classical boundary
value problems. As for a simple such example, we
take on X = L,{(0,1) the operator A:X—>X

Af=(d¥/dz" fH5H7 S,
with boundary condition

(d/dz) flz)— 0, z=0, 1
where
D{A) =1fel [0, 1) (d/dz)[f exists,
is absolutely continuous and
(d/dz) flz} =0, z=0,11
In this case, the spectrum conmsists of the simple
eigenvalues {7*(5-§), j = 0,L,2,..; with the corres-
ponding eigenfunctions tcos{ jmrz), 1 = 0,1,2,...1

6. Conclusions

In this paper, we proposed a design procedure
for constructing finite dimensional compensators
for infinite dimensional systems with bounded
input and output operators. The procedure is basi-
cally finite dimensional in that we construct a finite
dimensional observer and correct itsdynamics to
account for the effect of the residual modes, The
close scrutinization of the methods provides some
information on how small the dimension of the com-
pensator can be. It is, of curse, of interest to extend
our results to the systems with unbounded control

and sensing.
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