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Abstract-Adaptive controllers for linear system whose nominal values of coefficients only are known,
that is corrupted by disturbance, are designed by signal synthesis model reference adaptive control
(MRAC). This design is stemmed from the Lyapunov direct method. To reduce the model following
error and to improve the conrergence rate of the design, an indirect suboptimal control law is de rived
using the Hamilton Jacobi Bellman equation. Proper compensation for the effects of time varying
coefficients and plant disturbance are suggested. In the design procedure no complete identification
of unknown coefficients are required.

1. Introduction of view, In any event the stability analyses of these

. designs must thoroughly be reviewed. The Lyapunov
Model reference adaptive control (MRAC) has

) direct method and the Popov hyperstability method
developed, and has extensively used by several re

are perhaps the most widely used approaches to

searchers in conjunction with various applications, analyze the stability issues of an MRAC design,

There are a number of ways, as indicated in the
list of references, ?>%»® #-2:2 that MRAC can

be set for an application. Some of these schemes

Since the MRAC method have extensively used as
an analytical tool to design various controllers
from the stability point of view and based on the

have been actually developed from stability point Lyapunov direct method, therefore it will be con-

C @ B REE M) BRT SERRR cerned with the design aspect of the controller. That

g HFE 19889 S5H 10 design will become stable in the sense of Lyapunov.
1ERIEIE © 19885 71 28H The interesting feature of the applications of the
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Lyapunov method in MRAC design is that it also
enables us to have a measure of convergence rate
of the adaptive scheme for analysis *, although this
task is not trivial. Such design will find many in-
teresting applications ¥, The main contribution
of this paper is to solve, although indirectly, for an
optimal measure of the convergence rate of the
adaptive schemes that are designed based on the
Lyapunov direct method. These controllers have
developed with applications of adaptive control
theory to robot manipulator systems in*-'" The
results are, however, general enough to be used
in a number of other dynamical systems.

Before presenting the results, two different meth
ods of parameter adaptation and signal synthesis
adaptation are stated. In parameter adaptation
method,
trices are adjusted so as to reduce the generalized

feedforward and / or feedback gain ma-

error between the plant and the corresponding ref-
erence model. This method, in general, assures as-

9+ but this method requires

ymptotic stability
perfect model matching for asymptotic stability
3 direct adjustability and matchability of parame-
1

ters ™. On the other hand, the signal synthesis
method does not require the above two stated con-
ditions. This method does not, however, assure asym-
ptotic stability but it is stable in the sense of boun-
ded error. In this paper, signal synthesis method is
studied to improve the system performance, Com-
pensation against the effects of time — varying coef-
ficients and system uncertainties are suggested.

The organization of this paper is as follows. In
Section 2, the problem statement is presented. In
Section 3,4 and 5 signal synthesis MRAC based on
the Lyapunov direct method is developed. Conclu-
sions are deferred to Section 6.

2. Problem Statement

Consider a plant which has unknown time--vary
ing coefficients as follows,

Pk, (t)=A,(t) x,(t) + B, (t) ult) +vit), (1)

where Ap(t) € R ™" B, (t) € R ™ are time — varying
unknown coefficient matrices, for n2r; xp(t)€R
" is directly measurable state vector: u(t) e R' is
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the adaptive control input vector to be adjusted
by certain adaptive mechanism described in the
sequel; and v(t) € R" is uncertainty vector repre-
senting unknown additive environmental distur-
bace such that

v 1= v (t) lnex & &o (1a)

where || - || represents Euclidean norm, and sub-
script max is maximum value of the norm,
The reference model for the above plant is de-

scribed by
M 2%, (1) = A {t) xu(t) +Ba(t) wit), (2}

where An € R"*", Bn€ R"*"are constant matrices
such that the pair (Ap, Bm) is completely control-
lable, and Ay is hurwitzian matrix: xp(t) € R is
the state vector: and w(t) € R is the reference input
vector such that

fw() = lwt) ine & & (2a)
The objective of this study is to design adaptive
controller to force the state of the plant (1) to follow

that of the reference model(2). As a consequence
of this design it is assumed that

i Xp(t) ” = H xp(t) ”max & Cxo. (3)

Furthermore, this design will result in fast—con-
verging error between the above two states. These
problems are addressed in signal synthesis method

which is stemming from the Lyapunov direct meth -
od.

3. Stable Adaptive Law

Consider Ap(t)=An(t)+2A(t), Bo(t)=Bn(t)+
£B(t), Kn(t)=B Tn(t) (An—An(t)), Ha(t)=B{
n(t) Bm. Here AA and AB represents deviation
from the nominal values of Ap and By, The super-
script T represents the left Penrose pseudo — inverse
of Bn(t) which exists if Ba(t) Ba(t) is a nonsingular
matrix #, and superscrigt T denotes the transpose
of a matrix, In the following, t in xp(t), Ap(t), B
p(t), u(t), v(t), xm(t), w(t), Kn(t) and Ha(t) will
be dropped for convenience,

Using a control law

u==K,x,+H,wtu,, (4)
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in plant (1) yields
Xp=Anx, + Buw+ B, (ug—h),

(5}

where ugls control input that will be designed sub-
sequently and h=B, { [ AA+ABK,] x, + ABH
nWw + ABug+v]. The differential equation repre-
senting state error e2xy, —xy is
é= Ape— B, (ug+h).
To design a stable adaptive controller, following

(6)

lemma that uses a proportional control law is es-
tablished,
Lemma 1 : The system of differential equation (6),
for us= u, + up such that
u, =S 'BfPe, (7a)
up=(n+1 7/ [| BiPe ) BiPe, (7b)
is stable if 7' 21— | B} AB |/ nex >0, where
7 =8BiAB lnax SN, and {7¢)
72=B1{IIBs (A A+ ABK,) l[mox L ap
+ | B2 A BH, | max §wt By llnax |V [ maxt
(7d)
Here 0 <P=PT € R™" is the solution of the following
Riccati matrix equation.

—P = AIP+PA,—2PB,S'BIP+Q,
where 0 <Q=QT&€ R™" and 0<S=STeR"™"

{8)

Proof : Defining a positive function V, as the Lya-
punov function

V,=e"Pe, (9)
derivative of (9) along (6) becomes
V,=e"(P+ALP+ PAg) e—2e"PBuy,
—2e"PB,, (u,+h). (10

Substituting (7a) into (10) yields

V,=—e"Qe+ Vai, an

Where V= —ze" PB, (u,+h). From (5), the up-
per bound of h can be estimated as follows,

[hllnez =p & (1B (AA+ ABK,) oz Exo
+ ‘B;ABHn “maxgw
+ IBiAB |nax 1S | I BrPell

+ H B; A B Hmax ‘\ Up H + “ B Hmax “ v Hmax} . (12)
To achieve a
Min Max V,<0, or (13a)

u, h
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Min Max V., <0, (13b)

u, h

Up is chosen

_ BiPe
" BiPe]”

Rearranging the right-hand side of (12) and the
fact that 1- | B o &AB || 1ax >0, £ becomes

p=%+BIBiAB [ na: IS | BiPel. s

{14

Now, V,, becomes
. T
V= —2e"P Bn(%%p +h)

= 2| BaPel (Thilnex—p) 0.
Thus V, S —¢"Qe. Q. E. D.

From the above lemma, a sufficient condition of
A>01s

A B nex<1/IBF limas.

and it is seen that ujis the optimal solution mini-
mizing the cost function,

fm(eTQ(t)e% Lurs wud, (16}
o

for the linear differential equation

e= A e—B,u,. an
Since v, in Lemma 1 is chosen as the linear optimal
control input of system (6) with zero disturbances
(ie, AA=0, AB=( and v=0), thus the us=u,+up
is a near optimal solution for (6) with small un-
certainty vector h,

To improve the performance of this adaptive
system next lemma is developed. In this lemma an
integral control law uz is introduced. This u; will
result in smaller error with improved transient be-
havior than that yielded from Lemma 1.

Lemma 2 : The system of differential equation (6),
for us=u; + up+ uz such that

u, == ST'BIRe, (18a)
u,= (1, +7,. /1 BlPe|) B Pe, and (18b)
U= —m(t) u,+2U'BiPe, (18c)

with (8) is stable if 7' 1— || B AB | nax >0,
and

m ) > = Ann Q) [ I?/{Aen (U fluz i, 09)

for 0<U=UTeR™ and Amn( - ) represents the
minimum eigenvalue of( - ), Here ¥, and v, are the
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same as {(7c) and (7d), and y,=y,+4| Bf,aB |
max || Yz ||.

Proof : Defining a new positive definite function
V. as the Lyapunov function

V,—e'PettulUu,, o0

then the derivative of (20) along(6) and (18) sa-
tisfies the following inequality.

V,= —e"Qe + ul (Cu, — 2BIPe), or

\72 < -—e"Qe—m(t)ulUu,

S A (Q) el = m (1) Apin (U) oz [* <O.
Q.E.D.

In the Lyapunov synthesis, convergence speed
can be compared by a positive value. 71=-V/ A%
In this regard, design A(correspondingly, 74) has
faster convergrence rate than design B (correspon-
dingly, 7s) if 7a)7s. From Lemma 2, it is observed

that a sufficient condition of —V, /V, = —Vz /V,
18

M (1) 2 A (Q) Amazr (U) /24 pin (P) A (U}, 21

Since a large value of m leads to a small value of

luz |l (cf, {18 c)), thus m alone which satisfies
the above sufficient condition may not be effective
enough for the improvement of system performance.
A similar application for constraint m>{ is reported
in ¥ and ' for an auxiliary input. The next problem
is to find the proper m(t) that maximize 7(t) of the
system, The direct solution of this maximization
is, however, a difficult problem because #(t) con-
tains differential equation (6) which can not be
solved 'a priori. Thus in the following, an indirect
optimization scheme is presented that will result
in some answer to the just stated problem.

4. An Indirect — Suboptimal Control Law

To imporve the transient response of the system
it is desired to maximize #, with respect to m. This
direct optimization problem is very difficult. Ins-
tead, the lower bound of 7, is maximized with res-
pect to m, ie, a sufficient condition which will
result in an “optimal” m(t) corresponding to the
largest 7, is maximized. Due to the nature of this
optimization we may call such a scheme as “indi-
rect —suboptimal” solution.
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Consider lower bound of 172=-V2/ V., as follows,
2 g/\min (Q) lle i *+m (“ Amin (U) H U, \2
Ao (P) [ & 1+ Az (U, |2

Log(myu,, e), 22

where Apax( * ) represents the maximum eigenvalue
of( - ). As mentioned before, an alternative way
to maximize 7, is to maximize at time t=t°the lower
bound of 7, namely, g,(m, uz, e). Recall that u; is
a function of m and error e in(18¢), it is found that
g:(m,uz,e) is sensitive for m(t) which is directly
adjustable in controller. To establish a criterion to
maximize g,(m, ug, e). the following fact is intro-
duced.
Fact 1 : For given x(t), four positive function f,(x),
f,(x), f;°(x) and f, °(x), and a0, b)0, if

f; () /15 (0 21, %) /f, (x) and £} (x) 21, x),

for f; (x) /] (x) =a/b, 23

then

stk o f 24 gof

e S o

Let m=f,(x) /f,(x) and m°=f°,(x) /f,°(x). To
achieve the condition of g,°(m°, u;z°, e) =g,(m, u

z, €) for a given state e, following maximizaton cri-
teion is chosen

J:%l {allu, [+ gm?) dt,
for m=0, a>0, >0, (25)

subject to the constraint equation
U= —mu, +2U'BfPe & —mu,+, (26)

The above maximization procedure is proposed
by treating f as one entity. A set of indirect —subop-
timal solution of g,(m, uz, e), namely G,°, is defined
as follows.

(iz= {m"| the solution of Max J, for m°> ¢,},

ey
where £n= Anin (Q) Amaz (U) /2 { Anas (P) Aqin (U) 1

To maximize the criterion (25) and subject to
(26) several different methods such as Pontryagin’
s maximum principle, Gradient method, Hamilton-
—dJacobi — Bellman (HJB) equation exist ?, In this
paper the HJB is used to obtain a solution as fol-
lows.

The “optimal” m that solves Max J is
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—m, for m<(
m’ = (28a)
0, for m=0,
where
m = m, -+ m,, (28b)
for
m, = *'ﬁ lu, *{fTu,)*, and

2 .
m, :‘ggﬁﬁ “ u; || 10 (fTUz) -2,

A sufficient condition for maximization (28a) is

obtained from the second derivative of Hamiltonian
as follows.

Im, [4 [m, | =Va/B |l u .

Derivation of (28) is carried out by using the well
known procedure in %,

29

Even though the above indirect—suboptimal
control law does not minimize the state error direc-
tly, but it reduces the norm of both state error e
and the integral control input uz. The indirect—
suboptimal control law is now summarized in the
following algorithm,

Algorithm 1 : The system of differential equation
(6) with ug=u, + Up + uz is stable, Here u, is
given by (18a), @i, is given by (18b) and uz is as

follows,

u,— —m°u, +2U""'BIPe, with u,{0)=0. (30)

Equation (30) is the modified (18c) using m° as
generated from (27) and subject to (29).

5. Numerical Example

In the following a numerical example is introduced
to demonstrate the usefulness and applications of
above results, Consider plant (1) whose exact -value
of coefficients are unknown to controller with v=0,
and model (2) as follows,

P %, - —x,40.5u,

M %, = =20, + 2w,
The feedback gains are chosen as Kn= —30, Hh=
3, and input w is chosen such that xp=sin(t). With

these gains, the plant (1) acts like
xp= — 16x,+ 1. 5w+ 0. Sug. (1b)
The weighting matrices are chosen as follows, S=20,
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(cf., (27)).

P=20 with ¥,=0.05 and y,=1. The simulation resul-
ts shown in Fig. 1 and Fig. 2 demonstrate the im-
provement (specially in the sense of overshoot) of
application of the developed adaptive controller with
m=( relative to that cases with m=0.
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6. Conclusions

A plant with known nominal coefficients and
additive uncertainty vector is considered in this
paper. For this system adaptive controllers are de-
signed so that the plant state follows the state of
corresponding model, These controllers are designed
based on the Lyapunov direct method and the re-
sulting control schemes are developed by signal
synthesis method, Simulation result shows fast re-
ducing model following error. The integral input
with indirect-suboptimal solution reduces the norm
of these state error substantially, This method(di-
rect adaptation) does not require the complete iden-
tification of unknown coefficients, thus the designed
controller 1s fast and can be used in the real — time.

In the design procedure, delay of adjustable system
has not been considered, but present information
is used to control the unknown plant. The control-
lers for the corresponding discrete systems may be
designed similarly. In the above simulation nume-
rical constraint on the input vector have improved,
although the issue of design with input constraint
is not discussed theoretically in this paper. These
issues and the applications of this controller in design
for mechanical systems are subject of future resear-
ch.
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