ITERATIONS OF THE UNIT SINGULAR INNER FUNCTION

Hong Oh Kim

1. Introduction

Let $M(z) = \exp\left(-\frac{1+z}{1-z}\right)$ be the unit singular inner function. See [1] or [2] for the basic facts about inner functions. We define the iterations of M(z) as

$$M_{n+1}(z) = M_n \circ M(z), \quad M_1(z) = M(z), \quad n=1, 2, \dots$$

Since the composition $M_2(z) = M \circ M(z)$ is known (see [5] for example) to be a singular inner function it has the "cannonical" representation

$$M_2(z) = e^{i\gamma} \exp\left(-\int_T \frac{\xi+z}{\xi-z} d\mu(\xi)\right), \ \ \gamma \ \ {
m real},$$

where μ is a finite, positive singular Borel measure on the unit circle T. In section 2, we have explicit cannonical representation of $M_2(z)$ by determining the singular measure μ . In section 3 we show that

$$\lim_{z \to a} M_n(z) = 0.213652452\cdots, |z| < 1.$$

These facts might have been known but could not be found in the literature.

2. $M \circ M(z)$

We need the following fact.

Proposition A[3]. If ϕ is a singular inner function and σ is its associated singular measure, then the mass of σ at $\xi \in T$ is given by

$$\sigma(\{\xi\}) = -\lim_{r \to 1} \frac{1-r}{2} \log |\phi(r\xi)|.$$

Since $M_2(z) = \exp\left(-\frac{1+M(z)}{1-M(z)}\right)$, the associated singular measure μ would carry point masses at the zeros of M(z)-1=0, which are

Received January 30, 1988.

$$z=\xi_n=\frac{2n\pi i-1}{2n\pi i+1}$$
, *n* integers.

To compute the magnitude of the mass of μ at each ξ_n we need some computational lemmas.

Lemma 1.
$$1 - |M(r\xi_n)|^2 \sim \frac{2(1-r^2)(4n^2\pi^2+1)}{(1+r)^2+4n^2\pi^2(1-r)^2}$$
 as $r \to 1$, where $A(r) \sim B(r)$ as $r \to 1$ means $A(r)/B(r) \to 1$ as $r \to 1$.

Proof.
$$1-|M(r\xi_n)|^2=1-\exp\left(-\frac{2(1-r^2)}{|1-r\xi_n|^2}\right)$$

$$=\frac{2(1-r^2)}{|1-r\xi_n|^2}-\frac{1}{2!}\left(\frac{2(1-r^2)}{|1-r\xi_n|^2}\right)^2+\cdots$$

$$\sim \frac{2(1-r^2)}{|1-r\xi_n|^2} \text{ as } r\to 1.$$

Since we easily compute

$$|1-r\xi_n|^2 = \frac{(1+r)^2 + 4n^2\pi^2(1-r)^2}{4n^2\pi^2+1},$$

the lemma follows.

Lemma 2.
$$|1-M(r\xi_n)|^2 \sim \frac{(1-r)^2(4n^2\pi^2+1)^2}{(1+r)^2+4n^2\pi^2(1-r)^2}$$
 as $r \to 1$.

$$\begin{aligned} Proof. \quad & 1 - M(r\xi_n) = 1 - \exp\left(-\frac{(1 - r^2) + r(\xi_n - \bar{\xi}_n)}{|1 - r\xi_n|^2}\right) \\ &= 1 - \exp\left(-\frac{(1 - r^2) (4n^2\pi^2 + 1) + 8rn\pi i}{(1 + r)^2 + 4n^2\pi^2(1 - r)^2} + 2n\pi i\right) \\ &= 1 - \exp\left(-\frac{(1 - r^2) (4n^2\pi^2 + 1) - 2n\pi i(1 - r)^2(4n^2\pi^2 + 1)}{(1 + r)^2 + 4n^2\pi^2(1 - r)^2}\right) \\ &\sim \frac{(1 - r) (4n^2\pi^2 + 1) \left[(1 + r) - 2n\pi(1 - r)i\right]}{(1 + r)^2 + 4n^2\pi^2(1 - r)^2}. \end{aligned}$$

Therefore, we have

$$|1-M(r\xi_n)|^2 \sim \frac{(1-r)^2(4n^2\pi+1)^2}{(1+r)^2+4n^2\pi^2(1-r)^2}.$$

We now prove our main

Theorem 3.
$$M \circ M(z) = \exp\left(-\sum_{-\infty}^{\infty} \frac{\xi_n + z}{\xi_n - z} \frac{2}{4n^2\pi^2 + 1}\right)$$
. (1)

Iterations of the unit singular inner function

That is, $\mu = \sum_{-\infty}^{\infty} \frac{2}{4n^2\pi^2 + 1} \delta_n$, where δ_n is the unit mass at the point ξ_n .

Incidently, we have

$$\frac{1+M(z)}{1-M(z)} = \sum_{-\infty}^{\infty} \frac{\xi_n + z}{\xi_n - z} \frac{2}{4n^2\pi^2 + 1}.$$

Proof. We apply Proposition A and use Lemmas 1 and 2 to compute the mass of μ at ξ_n as

$$\begin{split} \mu(\{\xi_{n}\}) = & \lim_{r \to 1} \frac{1-r}{2} \frac{1 - |M(r\xi_{n})|^{2}}{|1 - M(r\xi_{n})|^{2}} \\ = & \lim_{r \to 1} \frac{1-r}{2} \frac{2(1-r^{2})(4n^{2}\pi^{2}+1)}{(1+r)^{2} + 4n^{2}\pi^{2}(1-r)^{2}} \cdot \frac{(1+r)^{2} + 4n^{2}\pi^{2}(1-r)^{2}}{(1-r)^{2}(4n^{2}\pi^{2}+1)^{2}} \\ = & \frac{2}{4n^{2}\pi^{2}+1}. \end{split}$$

If we note that

$$\mu(T) = -\log|M \circ M(0)| = \frac{1 + e^{-1}}{1 - e^{-1}}$$
$$= \sum_{-\infty}^{\infty} \frac{2}{4n^2\pi^2 + 1}, \text{ (See [4, p. 50])}$$

we see that $\mu = \sum_{-\infty}^{\infty} \frac{2}{4n^2\pi^2 + 1} \delta_n$. Comparing the values of the both sides of (1) at z=0, we have the identity (1). This completes the proof.

3. $\lim M_n$

For the real values x (-1 < x < 1), $M(x) = \exp\left(-\frac{1+x}{1-x}\right)$ is decreasing from 1 to 0 as x varies from -1 to 1. Therefore M(x) has a unique fixed point λ on the interval (-1,1) i.e., $M(\lambda) = \lambda$. We compute $\lambda = 0.213652452\cdots$ by the Newton's method. We now prove

Theorem 4.
$$\lim_{z\to\infty} M_n(z) = \lambda$$
, $|z| < 1$.

Proof. We set $\alpha_j = M_j(0)$, $j = 1, 2, \cdots$. Since 0 < M(0) and M is strictly decreasing on the interval (-1, 1), we easily see that

$$\alpha_2 < \alpha_4 < \cdots < \alpha_{2j} < \cdots < \alpha_{2j+1} < \cdots < \alpha_3 < \alpha_1, \ j=1, 2, 3, \cdots.$$

The sequences $\{\alpha_{2j}\}$ and $\{\alpha_{2j+1}\}$ converge. Let

$$\lim_{j\to\infty}\alpha_{2j}=\varepsilon$$
 and $\lim_{j\to\infty}\alpha_{2j+1}=\delta$.

We note that for $j=1, 2, 3, \cdots$ we have

$$M_{2n}(\alpha_{2j}) = \alpha_{2(n+j)} \rightarrow \varepsilon$$
 as $n \rightarrow \infty$

and

$$M_{2n+1}(\alpha_{2j}) = \alpha_{2(n+j)+1} \rightarrow \delta \text{ as } n \rightarrow \infty.$$

By the Vitali's convergence theorem [6, p. 168], $\lim_{n\to\infty} M_{2n}(z)$ converges uniformly on the compact subsets of the unit disc |z|<1. Therefore $L(z)=\lim_{n\to\infty} M_{2n}(z)$ defines a holomorphic function on |z|<1. Since

$$L(\alpha_{2j}) = \lim_{n \to \infty} M_{2n}(\alpha_{2j}) = \lim_{n \to \infty} \alpha_{2(n+j)} = \varepsilon$$

for all $j=1, 2, \dots$, we have $L(z) \equiv \varepsilon$ for all |z| < 1. But $L(\lambda) = \lambda$; so $L(z) \equiv \lambda \equiv \varepsilon$.

Similarily, we have

$$N(z) \equiv \lim_{n \to \infty} M_{2n+1}(z) \equiv \lambda, |z| < 1.$$

Therefore we have

$$\lim_{n\to\infty} M_n(z) \equiv \lambda, |z| < 1.$$

This completes the proof.

Corollary. λ is the only fixed point of M in the unit disc |z| < 1.

References

- 1. Duren, P.L., Theory of Hp spaces, Academic Press, New York 1970.
- 2. Rudin, W., Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974.
- Shapiro, J. H. and Shields, A. L., Unusual topological properties of the Nevanlinna class, Amer. J. Math., SCVII (1975) 915-936.
- Stakgold, I., Boundary Value Problems of Mathematical Physics, Vol. I, McMillan Co., New York, 1972.
- Stephenson, K., Isometries of the Nevanlinna class, Indiana Univ. J., Vol. 26, No. 2 (1977) 307-324.
- Titchmarsh, E.C., The Theory of Functions, 2nd Ed. Oxford Univ. Press, 1950.

Korea Advanced Institute of Science and Technology Seoul 130-010, Korea