ON FINITE DIMENSIONAL C*-SUBALGEBRAS OF AF C*-ALGEBRA

SUN YOUNG JANG

1. Introduction

The set of traces on a C*-algebra is a very useful invariant of the algebra and there have been some significant recent advances concerning the relationship between traces. finiteness and comparability of elements. For example a simple C^* -algebra with a finite trace is a finite algebra [3]. An approximately finite dimensional algebra, that is AF C*-algebra, is a C*-algebra wich is an inductive limit of a sequence of finite of finite dimensional C^* algebras. The study of AF C*-algebra was begun by Bratteli [2] following earlier more specialized studies by Glimm [6] and Diximier [4]. Elliott showed that if A is an AF C*-algebra, then A is classified up to isomorphism by $K_0(A)$, considered as apartially ordered abelian group, [5]. The relation between trace and $K_0(A)$ has been studied by J. Cuntz and G.K Pedersen. In this paper we study the finite dimensional C^* -sub algebras of AF C^* algebra by using the trace and the partially ordered abelian group K_{0} .

SUN YOUNG JANG

2. Preliminaries

Let A be a C-algebra. A trace on A is a function $\phi: A_+ \rightarrow [0, \infty]$ such that

- i) $\phi(\alpha x) = \phi(x)$ if $x \in A_+$ and $\alpha \in R_+$,
- ii) $\phi(x+y) = \phi(x) + \phi(y)$ if x and y belong to A_{+} ,
- iii) $\phi(u^*xu) = \phi(x)$ for all X in A_+ and all unitaries u in A.

In here A is a C*-algebra with unit containing A as a closed ideal and A_+ is the set of all positive elements in A. We say that ϕ is finite if $\phi(x) < \infty$ for $x \in A_+$ and ϕ is semi-finite if for each $x \in A_+$, $\phi(x')$ is the supremum of the numbers $\phi(y)$ for those $y \in A_+$ such that $y \le x$ and $\phi(y) < +\infty$. Clearly ϕ may be unbounded functional on A. $y \le x$ means that $x-y \in A_+$ for $x, y \in A$. If a trace ϕ is finite, then ϕ can be extended to A as a positive linear functional on A. ϕ is lower semi-continuous if for each $\alpha \in R_+$ the set $\{x \in A_+ | \phi(x) \le \alpha\}$ is closed. The trace has deep relation with the type of von Neumann algebras. A cone M in the positive part of a C*-algebra A is called hereditary if $0 \le x \le y$ and $y \in M$ implies $x \in M$ for each x in A. A *-subalgebra B of A is hereditary if B_+ ' is hereditary in A_+ .

LEMMA 2 ([3]). Let B a hereditary C^* -subalgebra of A. Each finite trace ρ on B has an extension to a semi-finite lower semi-continuous trace $\tilde{\rho}$ on A.

205

3. Ablian group K_0

Let A be a *-algebra. We present the construction of $K_0(A)$, which in genera yields a pre-ordered abelian group, built from the family of self adjoint projections in all matrix algebras over A. Let e, f be projections in A. eand f are *-equivalent, written $e \star f$; if there is an element $w \in A$ such that $w = ewf \ ww^* = e \ w^*w = f$. We define

$$P(A) = \bigcup_{n=1}^{\infty} \{ \text{projections in } M_n(A) \}.$$

In here $M_n(A) = \{[a_{ij}]_{m \times n} | a_{ij} \in A\}$. Given $e, f \in P(A)$ $e \not\approx f$ mean that $\begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix} \not\approx \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix}$ for some suitable sized zero matrices. And define $e, f \in P(A)$ to be stably *-equivalent, written $e \not\approx f$ provided $e \oplus g \not\approx f \oplus g$ for some $g \in P(A)$, i.e., $\begin{bmatrix} e & 0 \\ 0 & g \end{bmatrix} \not\approx \begin{bmatrix} f & 0 \\ 0 & g \end{bmatrix}$.

For $e \in P(A)$, we use [e] to denote the equivalence class of e with respect to $\stackrel{*}{=}$. If $e_1, e_2, f_1, f_2 \in P(A)$ with $e_1 \stackrel{*}{=} e_2$ and $f_1 \stackrel{*}{=} f_2$, then $e_1 \oplus f_1 \stackrel{*}{=} e_2 \oplus f_2$. Hence we see that \oplus induces well-defined binary operation + on the set of equivalence classes $P(A)/\stackrel{*}{=}$, where [e]+[f]= $[e \oplus f]$ for all $e, f \in P(A)$. Then the operation is commutative and associative. Moreover the semi-group $(P(A)/\stackrel{*}{=}, +)$ satisfies cancellation law: so $(P(A)/\stackrel{*}{=}, +)$ is an abelian group.

Denote

SUN YOUNG JANG

 $P(A)/\underset{\leftarrow}{*},+)=K_0(A).$

For any *-algebra A, we set

$$K_0(A)_+ = \{[e]\}e \in P(A)\}.$$

For any $x, y \in K_0(A)$ we define

$$x \leq y$$
 on $K_0(A)$ if and only if $y - x \in K_0(A)_+$.

The relation $\leq K_0(A)$ is a pre-order. A C*-algobra A is an AF C*-algebra if A is the norm-closure of the union of finite demensional C*-algebras A_n .

THEOREM 3.1([1]). If A is an AF C*-algebra, then $K_0(A)$ is a partially ordered abelian group.

PROSITIOM 3.2. Let A be a AF C*-algebra and p, q be projections in A. If $\phi(p) \leq \phi(q)$ for all nonzero traces ϕ on A, then $[p] \leq [q]$ in $K_0(A)$.

PROOF. We may assume that p, q lie in a finite dimensional subalgebra A_1 by replacing p and q by equivalent projections. By [2. Theorem 2.2], we can find an increasing sequence $(A_n)_{n=1}^{\infty}$ of finite dimensional subalgebras containing A_1 and A is the norm closure of $\bigcup_{n=1}^{\infty} A_n$. If $\phi(p) \leq \phi(q)$ for all trace ϕ on A, then $\phi(p) \leq \phi(q)$ for all trace ϕ on A, then $\phi(p) \leq \phi(q)$ for all trace ϕ on A, then $\phi(p) \leq \phi(q)$ for all trace ϕ on A_n for all n. If not ; let e be the unit of the finite dimensional C^* -subalgebra A_1 . There exists an integer n_0 and a trace ϕ_{n_0} , on A_{n_0} such that $\phi_{n_0}(p) > \phi_{n_0}(q)$ and $\phi_{n_0}(e) = \alpha$, for some $\alpha > 0$. Let $\phi'_{n_0} = \frac{1}{\alpha} \phi_{n_0}|_{A_0}e$. Since $eA_1e = A_1 \subset eA_{n_0}e$, ϕ'_{n_0} is a trace on $eA_{n_0}e$ such that $\phi'_{n_0}(p) > \phi'_{n_0}(q)$ and $\phi'_{n_0}(e) = 1$. Then for $n > n_0$ there

exists a trace ϕ_n on $eA_n e$ such that $\phi_0|_{eAn_0} e = \phi'_{n_0}$. Hence there exists a trace ϕ_n on $eA_n e$ such that $\phi_n(p) > \phi_n(q)$ and $\phi_n(e) = 1$ for $n > n_0$. Let eAe = B and $\tilde{\phi}_n$ be an extension of ϕ_n to a state on B. Since B has a unit e, $\{\tilde{\phi}_n\}$ has a weak*-limit $\tilde{\phi}$. Then $\tilde{\phi}$ is a tracial state and $\tilde{\phi}(e) = 1$. Since B is a hereditary subalgebra of A and $\tilde{\phi}|_{\theta_+}$ is a finite trace on B, by Lemma 2.1 $\tilde{\phi}$ extended to a trace on A. Futhemore $\tilde{\phi}(p) > \tilde{\phi}(q)$ and this contradicts to the hypothesis. Hence $[p] \leq [q]$ in $K_0(A_n)$. Since $[p] \leq [q]$ in $K_0(A)$ if and only if $[p] \leq [q]$ in $K_0(A_n)$ for some n, $[p] \leq [q]$ in $K_0(A)$.

Since $K_0(A)$ is a partially ordered group for an AF C*algeba A, if p, q are projections and $\phi(p) = \phi(q)$ for all traces ϕ on AF C*-algebra A, then [p] = [q] in $K_0(A)$.

PROPOSITION 3.3. Let A be an AF C*-algebra and p, q be projections in A. Then [p]=[q] in $K_0(A)$ if and only if $p \stackrel{*}{=} q$ in A.

PROOF. Clearly $p \gtrsim q$ implies [p] = [q]. In AF C*-algebra by [1. Lemma 20] if [p] = [q] in $K_0(A)$, then $\begin{bmatrix} p & 0 \\ 0 & 0 \end{bmatrix} \approx \begin{bmatrix} q & 0 \\ 0 & 0 \end{bmatrix}$ for some suitable sized zero matrix. Hence there exists a $w \in M_n(A)$ such that $w \ast w = \begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix}$ and $ww \ast = \begin{bmatrix} f & 0 \\ 0 & 0 \end{bmatrix}$ for some *n*. Since *e*, *f* are in *A* and the zero matrices in the above is of the same sized, there exists a partial isometry $w' \in A$ such that $w = \begin{bmatrix} w' & 0 \\ 0 & 0 \end{bmatrix}$.

4. Main results.

Let A be a *-algebra. A set $n \times n$ *-matrix units in A is a set of $n \times n$ matrix units $\{e_{ij} | i, j = 1, \dots, n\}$ of elements of A such that $e_{ij}e_{km} = \delta_{jk}e_{im}$ and $e_{ij}^* = e_{ij}$ for all i, j. In this case e_{11}, \dots, e_{nn} are orthogonal projections. A *matricial subbasis in A is a set $\{e_{pq}^i | i = 1, \dots, k, p, q = 1, \dots, n(i)\}$ of elements of A such that

- 1) $\{e_{pq}^{(i)}|p,q=1,\dots,n(i)\}$ is a set of $n(i) \times n(i)$ *-matrix units for each $i=1,\dots,k$;
- 2) $e_{pq}^{(i)} e_{rs}^{(j)} = 0$ for all i, j, p, q, r, s with $i \neq j$.

Then $e^{(i)} = \sum_{n=1}^{n(i)} e_{pp}^{(i)}$ are mutually orthogonal projections in A. If a *-algebra A has a *-matricial subbasis $\{e_{pq}^{(i)}\}$ that spans A, then $\{e_{pq}^{(i)}\}$ is a *-matricial basis for A. In this case $\sum_{i=1}^{k} \sum_{p=1}^{n(i)} e_{pp}^{(i)}$ is a unit of A. Thus a *-algebrais matricial if and only if it has a *-matricial basis.

THEOREM 4. Let A be an AF C*-algebra with unit acting on a separable Hilbert space H. Suppose that $M \subset A$ and $N \subset A$ are *-isomorphic finite dimensional C*-subalgebras of A. Then there exists a unitary element u in A such that $uMu^*=N$.

PROOF. Suppose that $\{E_{ij}^k \mid i, j = 1, \dots, n_k, k = 1, \dots, n\}$ and $\{F_{ij}^k \mid i, j = 1, \dots, n_k, k = 1, \dots, n\}$ are *-matricial basis of M and N respectively. We may assume that M, N have the same unit with A. We show that there exists a partial

isometry $V^{k} \in A$ with initial projection E_{11}^{k} and terminal projection F_{11}^{k} for $k=1, \dots, n$. Let $U=\sum_{k=1}^{n}\sum_{i=1}^{n}F_{i1}^{k}V^{k}$ E_{1i}^{k} .

$$uE_{ij}^{r} u^{*} = \left(\sum_{k}^{n} \sum_{q=1}^{n_{k}} F_{qi}^{k} V^{k} E_{iq}^{r}\right) (E_{ij}^{r}) \left(\sum_{s}^{n} \sum_{p}^{n_{k}} F_{pi}^{s} V^{s} E_{ip}^{s}\right)^{*}$$

$$= \left(\sum_{k}^{\frac{3}{2}} \sum_{q} F_{qi}^{k} V^{k} E_{iq}^{k}\right) (E_{ij}^{r}) (\sum_{s} \sum_{p} E_{pi}^{s} (V^{s})^{*} F_{ip}^{s})$$

$$= \sum_{k,q,r,p} \delta_{kr} \delta_{qi} \delta_{rs} \delta_{jp} F_{qi}^{k} V^{k} E_{iq}^{k} E_{ij}^{r} E_{pi}^{s} (V^{s})^{*} F_{ip}^{s}$$

$$= F_{i1}^{r} V^{r} E_{1i}^{r} E_{ij}^{r} E_{ji}^{r} (V^{r})^{*} F_{ij}^{r}$$

$$= F_{i1}^{r} V^{r} E_{1i}^{r} (V^{r})^{*} F_{ij}^{*} = F_{ij}^{r}.$$

Therefore

$$uMu^* = N \text{ and } uu^* = \sum_{k,s_s,p_{,q}} (F_{qi}^k V^k E_{iq}^k) (F_{pi}^s V^s E_{ip}^s)^*$$
$$= \sum_{k,s_s,p_{,q}} \delta_{ks} \delta_{pq} F_{qi}^k V^k E_{iq}^k E_{pi}^s (V^s)^* F_{ip}^s$$
$$= \sum_{k,q} F_{qi}^k V^k E_{iq} E_{qi}^k (V^k)^* F_{iq}^k$$
$$= \sum_{k,q} F_{qq}^k = I$$

Similarly $u^*u = I$ Hence u is the unitary that we want. Let ϕ be a trace on A. Let $p_i^k = EE_{ii}^k$, $Q_i^k = EF_{ii}^k$ $1 \le k \le n$ for central projection $E \in A$. Then

$$\sum_{k=1}^{n}\sum_{i=1}^{n_{k}}p_{i}^{k}=\sum_{k=1}^{n}\sum_{i=1}^{n_{k}}Q_{i}^{k}=E.$$

We put

$$E^{k} = \sum_{i=1}^{n_{k}} E^{k}_{ii}$$

and

$$F^{k} = \sum_{i=1}^{n_{k}} F^{k}_{ii} .$$

Let

$$S(i) = \sum_{k=1}^{n} E^{k} - E^{k}_{11} - E^{k}_{1i} + E^{k}_{1i} + E^{k}_{1i}$$

and

$$V(i) = \sum_{k=1}^{n} F^{k} - F^{k}_{11} - F^{k}_{1i} + F^{k}_{1i} + F^{k}_{1i}$$

Then

$$S(i) P_{1}^{k} S(i)^{*} = \left(\sum_{l=1}^{n} E^{l} - E_{11}^{l} - E_{1i}^{1} + E_{1i}^{l} + E_{i1}^{l}\right) (EE_{il}^{k})$$

$$\left(\sum_{r=1}^{n} E^{r} - E_{11}^{r} - E_{ii}^{r} + E_{i1}^{r} + E_{i1}^{r}\right)^{*}$$

$$= \left(\sum_{l=1}^{n} \delta_{lk} EE^{l} E_{11}^{k} - EE_{11}^{k} E_{11}^{k} - EE_{ii}^{l} E_{11}^{k}\right)$$

$$\left(\sum_{r=1}^{n} E^{r} - E_{11}^{r} - E_{ii}^{r} + E_{i1}^{r} + E_{1i}^{r}\right)$$

$$\left(\sum_{r=1}^{n} E^{r} - E_{11}^{r} - E_{ii}^{r} + E_{i1}^{r} + E_{1i}^{r}\right)^{*}$$

$$= \sum_{r} \delta_{kr} EE_{i1}^{k} (E^{r} - E_{11}^{r} E_{ii}^{r} + E_{i1}^{r} + E_{ii}^{r})$$

$$= EE_{i1}^{k} E^{k} - EE_{i1}^{k} E_{11}^{k} - EE_{i1}^{k} E_{ii}^{k} + EE_{i1}^{k} E_{ii}^{r}$$

$$+ EE_{i1}^{k} E_{1i}^{k} = EE_{ii}^{k} = P_{ii}^{k},$$

Moreover $S(i)S(i)^* = S(i)^*S(i) = \sum_{k=1}^n E^k = I$. By similar computation $V_{(i)}Q_i^k V_{(i)}^* = Q_i^k$.

Since $S_{(i)}$, $V_{(i)}$ are unitary and trace is invariant under inner autorphisms, $\phi(EE_{1i}^k) = \phi(EE_{1i}^k) = \phi(EF_{1i}^k) = \phi(EF_{1i}^k)$ for all $k=1, \dots, n \ j=1, \dots, n_k$.

Since *E* is a central projection, $\phi(E_{11}^k) = \phi(F_{11}^k)$ for all trace ϕ on *A*. By Proposition 3.2 $[E_{11}^k] = [F_{11}^k]$ in $K_0(A)$ and by Proposition 3.3 there exists a partial isometry $V^k \in A$ with initial projection E_{11}^k and terminal projection F_{11}^k .

References

- K. P. Goodearl, Notes on Real and Complex C^{*}-Algebras, Shvid Publishing Limited, 1982.
- Bratteli, Inductive limits of finite dimensional C*-algebras, Trans Amer. Math. Soc 171 (1972), 195-234.
- J. Cuntz and Pedersen, Equivalence and traces on C*-algebras, J. Functional Analysis 33(1979), 135-164.
- J. Diximier On some C*-algebras considered by Glimm, J. Functional Analysis 1 (1967), 182-203.
- G. Elliott, On the classification of inductive limits of sequences of semi-simple finite dimensional algebrais J. Algebra 38 (1976), 29-44.
- Glimm, On a certain class of operator algebra, Trans. Amer. Math. Soc. 95 (1960), 318-340.

University of Ulsan Ulsan 690 Korea

Received May 11, 1988