ON FINITE DIMENSIONAL $C *$-SUBALGEBRAS

OF AF C*-ALGEBRA

Sun Young Jang

1. Introduction

The set of traces on a C^{*}-algehra is a very wisefui invariant of the algebra and there have been some significant recent advances concerning the relationship between traces, finiteness and comparability of elements. For example a simple C^{*}-algebra with a finite trace is a finite algebra [3]. An approximately finite dimensional algebra, that is AF C^{*}-algebra, is a C^{*}-algebra wich is an inductive limit of a sequence of finite of finite dimensional C^{*} algebras. The study of AF C^{*}-algebra was begun by Bratteli [2] following earlier more specialized studies by Glimm [6] and Diximier [4]. Elliott showed that if A is an AF C^{*}-algebra, then A is classified up to isomorphism by $K_{0}(A)$, considered as apartially ordered abelian group, [5]. The relation between trace and $K_{0}(A)$ has been studied by J. Cuntz and G.K Pedersen. In this paper we study the finite dimensional C^{*}-sub algebras of AF C^{*} algebra by using the trace and the partially ordered abelian group K_{0}.

2. Preliminaries

Let A be a C-algebra. A trace on A is a function $\phi: A_{+} \rightarrow[0, \infty]$ such that
i) $\phi(\alpha x)=\phi(x)$ if $x \in A_{+}$and $\alpha \in R_{+}$,
ii) $\phi(x+y)=\phi(x)+\phi(y)$ if x and y belong to A_{+},
iii) $\phi\left(u^{*} x u\right)=\phi(x)$ for all X in A_{+}and all unitaries u in A.

In here A is a C^{*}-algebra with unit containing A as a closed ideal and A_{+}is the set of all positive elements in A. We say that ϕ is tinite it $\phi(x)<\infty$ for $x \in A_{+}$and ϕ is semi-finite if for each $x \in A_{+}, \phi\left(x^{\prime}\right)$ is the supremum of the numbers $\phi(y)$ for those $y \in A_{+}$such that $y \leq x$ and $\phi(y)<+\infty$. Clearly ϕ may be unbounded functional on A. $y \leq x$ means that $x-y \in A_{+}$for $x, y \in A$. If a trace ϕ is finite, then ϕ can be extended to A as a positive linear functional on A. ϕ is lower semi-continuous if for each $\alpha \in R_{+}$the set $\left\{x \in A_{+} \mid \phi(x) \leq \alpha\right\}$ is closed. The trace has deep relation with the type of von Neumann algebras. A cone M in the positive part of a C^{*}-algebra A is called hereditary if $0 \leq x \leq y$ and $y \in M$ implies $x \in M$ for each x in A. A ${ }^{*-\text { subalgebra } B}$ of A is hereditary if $B_{+}{ }^{\prime}$ is hereditary in A_{+}.

Lemma 2 ([3]). Let B a hereditary C^{*}-subalgebra of A. Each finite trace ρ on B has an extension to a semi-finite lower semi-continuous trace $\tilde{\rho}$ on A.

3. Ablian group K_{0}

Let A be a ${ }^{*}$-algebra. We present the construction of $K_{0}(A)$, which in genera yields a pre-ordered abelian group, builf from the family of self adjoint projections in all matrix algebras over A. Let e, f be projections in A. e and f are $*$-equivalent, written $e * f$; if there is an element $w \in A$ such that $w=e w f w^{*}=e w^{*} w=f$. We define

$$
P(A)=\bigcup_{n=1}^{\infty}\left\{\text { projections in } M_{n}(A)\right\} .
$$

In here $M_{n}(A)=\left\{\left[a_{i},\right]_{m \times n} \mid a_{i}, \in A\right\}$. Given $e, f \in P(A)$ $e \approx f$ mean that $\left[\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right] *\left[\begin{array}{ll}f & 0 \\ 0 & 0\end{array}\right]$ for some suitable sized zero matrices. And define $e, f \in P(A)$ to be stably *-equivalent, written $e \stackrel{*}{*} f$ provided $e \oplus g \stackrel{*}{\sim} f \oplus g$ for some $g \in P(A)$, i.e., $\left[\begin{array}{ll}e & 0 \\ 0 & g\end{array}\right] *\left[\begin{array}{ll}f & 0 \\ 0 & g\end{array}\right]$.

For $e \in P(A)$, we use $[e]$ to denote the equivalence class of e with respect to $\underset{\sim}{*}$. If $e_{1}, e_{2}, f_{1}, f_{2} \in P(A)$ with $e_{1} \stackrel{*}{\approx} e_{2}$ and $f_{1} \stackrel{*}{\approx} f_{2}$, then $e_{1} \oplus f_{1} \stackrel{*}{\stackrel{*}{*}} e_{2} \oplus f_{2}$. Hence we see that \oplus inducesa well-defined binary operation + on the set of equivalence classes $P(A) / \stackrel{*}{\approx}$, where $[e]+[f]=$ $[e \oplus f]$ for all $e, f \in P(A)$. Then the operation is commutative and associative. Moreover the semi-group $(P(A) / *,+)$ satisfies cancellation law: so $(P(A) / \stackrel{*}{\approx}+)$ is an abelian group.

Denote

$$
P(A) / \stackrel{*}{\approx},+)=K_{0}(A) .
$$

For any ${ }^{*}$-algebra A, we set

$$
\left.K_{0}(A)_{+}=\{[e]\} e \in P(A)\right\}
$$

For any $x, y \in K_{0}(A)$ we define

$$
x \leq y \text { on } K_{0}(A) \text { if and only if } y-x \in K_{0}(A)_{+} .
$$

The relation $\leq K_{0}(A)$ is a pre-order. A C^{*}-algobra A is an AF C^{*}-algebra if A is the norm-closure of the union of finite demensional C^{*}-algebras A_{n}.

Theorem 3.1([1]). If A is an AF C^{*}-algebra, then $K_{0}(A)$ is a partially ordered abelian group.

Prositiom 3.2. Let A be a AF C^{*}-algebra and p, q be projections in A. If $\phi(p) \leq \phi(q)$ for all nonzero traces ϕ on A, then $[p] \leq[q]$ in $K_{0}(A)$.

Proof. We may assume that p, q lie in a finite dimensional subalgebra A_{1} by replacing p and q by equivalent projections. By [2. Theorem 2.2], we can find an increasing sequence $\left(A_{n}\right)_{n=1}^{\infty}$ of finite dimensional subalgebras containing A_{1} and A is the norm closure of $\bigcup_{n=1}^{\infty} A_{n}$. If $\phi(p) \leq \phi(q)$ for all trace ϕ on A, then $\phi(p) \leq \phi(q)$ for all trace ϕ on A_{n} for all n. If not ; let e be the unit of the finite dimensional C^{*} subalgebra A_{1}. There exists an integer n_{0} and a trace $\phi_{n_{0}}$, on $A_{n_{0}}$ such that $\phi_{n_{0}}(p)>\phi_{n_{0}}(q)$ and $\phi_{n_{0}}(e)=\alpha$, for some $\alpha>0$. Let $\left.\phi_{n_{0}}=\frac{1}{\alpha} \phi_{n_{0}} \right\rvert\, A_{0} e$. Since $e A_{1} e=A_{1} \subset e A_{n_{0}} e, \phi^{\prime}{ }_{n_{0}}$ is a trace on $e A_{n_{0}} e$ such that $\phi^{\prime}{ }_{n_{0}}(p)>\phi^{\prime}{ }_{n_{0}}(q)$ and $\phi_{n_{0}}^{\prime}(e)=1$. Then for $n>n_{6}$ there
exists a trace ϕ_{n} on $e A_{n} e$ such that $\phi_{0} l_{e n_{0}} e=\phi_{n_{0}}$. Hence there exists a trace ϕ_{n} on $e A_{n} e$ such that $\phi_{n}(p)>\phi_{n}(q)$ and $\phi_{n}(e)=1$ for $n>n_{0 .}$ Let $e A e=B$ and $\tilde{\phi}_{n}$ be an extension of ϕ_{n} to a state on B. Since B has a unit $e,\left\{\tilde{\phi}_{n}\right\}$ has a weak*-limit $\tilde{\phi}$. Then $\tilde{\phi}$ is a tracial state and $\tilde{\phi}(e)=1$. Since B is a hereditary subalgebra of A and $\left.\tilde{\phi}\right|_{\theta_{+}}$is a finite trace on B, by Lemma $2.1 \tilde{\phi}$ extended to a trace on A. Futhemore $\ddot{\phi}(p)>\tilde{\phi}(q)$ and this contradicts to the hypothesis. Hence $[p] \leq[q]$ in $K_{0}\left(A_{n}\right)$. Since $[p] \leq[q]$ in $K_{0}(A)$ if and only if $[p] \leq[q]$ in $K_{0}\left(A_{n}\right)$ for some n, $[p] \leq[q]$ in $K_{0}(A)$.

Since $K_{0}(A)$ is a partially ordered group for an AF C^{*} algeba A, if p, q are projections and $\phi(p)=\phi(q)$ for all traces ϕ on AF C^{*}-algebra A, then $[p]=[q]$ in $K_{0}(A)$.

Proposition 3.3. Let A be an AF C^{*}-algebra and p, q be projections in A. Then $[p]=[q]$ in $K_{0}(A)$ if and only if $p \stackrel{*}{\sim} q$ in A.

Proof. Clearly $p_{*}^{*} q$ implies $[p]=[q]$. In AF C^{*}-algebra by [l. Lemma 20] if $[p]=[q]$ in $K_{0}(A)$, then $\left[\begin{array}{ll}p & 0 \\ 0 & 0\end{array}\right]$ * $\left[\begin{array}{cc}q & 0 \\ 0 & 0\end{array}\right]$ for some suitable sized zero matrix. Hence there exists a $w \in M_{n}(A)$ such that $w^{*} w=\left[\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right]$ and $w w^{*}=$ $\left[\begin{array}{ll}f & 0 \\ 0 & 0\end{array}\right]$ for some n. Since e, f are in A and the zero matrices in the above is of the same sized, there exists a partial isometry $w^{\prime} \in A$ such that $w=\left[\begin{array}{cc}w^{\prime} & 0 \\ 0 & 0\end{array}\right]$.

4. Main results.

Let A be a ${ }^{*}$-algebra. A set $n \times n \quad{ }^{*}$-matrix units in A is a set of $n \times n$ matrix units $\left\{e_{i j} \mid i, j=1, \cdots, n\right\}$ of elements of A such that $e_{i}, e_{k m}=\delta_{i k} e_{t m}$ and $e_{i,}^{*}=e_{i,}$ for all i, j. In this case $e_{11}, \cdots, e_{n n}$ are orthogonal projections. A *matricial subbasis in A is a set $\left\{e_{p q}^{i} \mid i=1, \cdots, k, p, q=1, \cdots\right.$, $n(i)\}$ of elements of A such that

1) $\left\{e_{p q}^{(t)} \mid p, q=1, \cdots, n(i)\right\}$ is a set of $n(i) \times n(i){ }^{*}$-matrix units for each $i=1, \cdots, k$;
2) $e_{p q}^{(r)} e_{r s}^{(,)}=0$ for all i, j, p, q, r, s with $i \neq j$.

Then $e^{(t)}=\sum_{n=1}^{n(i)} e_{p p}^{(t)}$ are mutually orthogonal projections in A. If a ${ }^{*}$-algebra A has a ${ }^{*}$-matricial subbasis $\left\{e_{P q}^{\left.()_{1}\right)}\right\}$ that spans A, then $\left\{e_{p q}^{p_{p}^{2}}\right\}$ is a ${ }^{*}$-matricial basis for A. In this case $\sum_{i=1}^{k} \sum_{p=1}^{n(1)} e_{p \phi}^{(i)}$ is a unit of A. Thus a *-algebrais matricial if and only if it has a $*$-matricial basis.

Theorem 4. Let A be an AF C^{*}-algebra with unit acting on a separable Hilbert space H. Suppose that $M \subset A$ and $N \subset A$ are ${ }^{*}$-isomorphic finite dimensional C^{*}-subalgebras of A. Then there exists a unitary element u in A such that $u M u^{*}=N$.

Proof. Suppose that $\left\{E_{i}^{k} \mid i, j=1, \cdots, n_{k}, k=1, \cdots, n\right\}$ and $\left\{F_{i j}^{k} \mid i, j=1, \cdots, n_{k}, k=1, \cdots, n\right\}$ are ${ }^{*}$-matricial basis of M and N respectively. We may assume that M, N have the same unit with A. We show that there exists a partial
isometry $V^{k} \in A$ with initial projection E_{11}^{k} and terminal projection F_{11}^{k} for $k=1, \cdots, n$. Let $U=\sum_{k=1}^{n} \sum_{i=1}^{\pi_{k}} F_{i 1}^{k} V^{k} E_{1 i}^{k}$.

$$
\begin{aligned}
u E_{i j}^{r} u^{*} & =\left(\sum_{h}^{n} \sum_{q=1}^{n k} F_{q i}^{k} V^{k} E_{i q}^{\prime}\right)\left(E_{i j}^{r}\right)\left(\sum_{s}^{n} \sum_{p}^{n_{k}} F_{i j}^{s} V^{s} E_{i p}^{s}\right)^{*} \\
& =\left(\sum_{h}^{s} \sum_{q} F_{q i}^{b} V^{k} E_{i q}^{k}\right)\left(E_{i j}^{r}\right)\left(\sum_{j} \sum_{p} E_{j i}^{s}\left(V^{s}\right)^{*} F_{i p}^{s}\right) \\
& =\sum_{k, q, i, p} \delta_{k r} \delta_{q i} \delta_{r s} \delta_{j p} F_{q i}^{k} V^{k} E_{i q}^{k} E_{i j}^{r} E_{p i}^{s}\left(V^{s}\right)^{*} F_{i p}^{s} \\
& =F_{i 1}^{r} V^{r} E_{1 i}^{r} E_{i j}^{r} E_{j i}^{r}\left(V^{r}\right) * F_{i j}^{r} \\
& =F_{i 1}^{r} V^{r} E_{11}^{r}\left(V^{r}\right)^{*} F_{i j}^{*}=F_{i j}^{r} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
u M u^{*}=N \text { and } u u^{*} & =\sum_{k, s, p, q}\left(F_{q i}^{h} V^{k} E_{i q}^{k}\right)\left(F_{p i}^{s} V^{s} E_{i p}^{s}\right) * \\
& =\sum_{k, s, p, q} \delta_{k s} \delta_{p q} F_{q i}^{b} V^{k} E_{i q}^{h} E_{p i}^{s}\left(V^{s}\right) * F_{i p}^{s} \\
& =\sum_{k, q} F_{q ;}^{k} V^{\mathbf{k}} E_{i q} E_{q i}^{k}\left(V^{k}\right)^{*} F_{i q}^{k} \\
& =\sum_{k, q} F_{q q}^{k}=I
\end{aligned}
$$

Similarly $u^{*} u=I$ Hence u is the unitary that we want. Let ϕ be a trace on A. Let $p_{i}^{k}=E E_{i i}^{k}, Q_{i}^{k}=E F_{i i}^{k} 1 \leq k \leq n$ for central projection $E \in A$. Then

$$
\sum_{k=1}^{n} \sum_{i=1}^{n_{k}} p_{i}^{k}=\sum_{k=1}^{n} \sum_{i=1}^{n_{k}} Q_{i}^{k}=E .
$$

We put

$$
E^{k}=\sum_{i=1}^{n_{k}} E_{i i}^{k}
$$

and

$$
F^{k}=\sum_{i=1}^{n k} F_{i i}^{k}
$$

Let

$$
S(i)=\sum_{k=1}^{n} E^{k}-E_{11}^{k}-E_{i i}^{k}+E_{1 i}^{k}+E_{i 1}^{k}
$$

and

$$
V(i)=\sum_{k=1}^{n} F^{k}-F_{11}^{k}-F_{i i}^{k}+F_{1 i}^{k}+F_{i 1}^{k}
$$

Then

$$
\begin{aligned}
S(i) P_{1}^{k} S(i) *= & \left(\sum_{i=1}^{n} E^{\prime}-E_{11}^{l}-E_{i 1}^{1}+E_{11}^{l}+E_{i 1}^{r}\right)\left(E E_{1 I}^{k}\right) \\
& \left(\sum_{r=1}^{n} E^{r}-E_{11}^{r}-E_{i i}^{r}+E_{i 1}^{r}+E_{i 1}^{r}\right) * \\
= & \left(\sum_{i=1}^{n} \delta_{1 k} E E^{y} E_{11}^{k}-E E_{11}^{k} E_{11}^{k}-E E_{i 1}^{l} E_{11}^{k}\right. \\
& \left.+E E_{1 i}^{l} E_{11}^{k}+E E_{21}^{l} E_{11}^{k}\right) \\
& \left(\sum_{r=1}^{n} E^{r}-E_{11}^{r}-E_{i 2}^{r}+E_{i 1}^{r}+E_{1 i}^{r}\right) * \\
= & \sum_{r} \delta_{k r} E E_{11}^{k}\left(E^{r}-E_{11}^{r} E_{i 1}^{r}+E_{i 1}^{r}+E_{1 i}^{r}\right) \\
= & E E_{i 1}^{k} E^{k}-E E_{i 1}^{k} E_{11}^{k}-E E_{i 1}^{k} E_{11}^{k}+E E_{i 1}^{k} E_{i 1}^{r} \\
& +E E_{11}^{k} E_{1 i}^{k}=E E_{i i}^{k}=P_{i 1}^{k}
\end{aligned}
$$

Moreover $S(i) S(i)^{*}=S(i) * S(i)=\sum_{n=1}^{n} E^{k}=I$. By similar computation $V_{(4)} Q_{i}^{k} V_{(1)} *=Q_{i}^{k}$.

Since $S_{(i)}, V_{(i)}$ are unitary and trace is invariant under inner autorphisms, $\phi\left(E E_{11}^{k}\right)=\phi\left(E E_{j l}^{k}\right)=\phi\left(E E_{11}^{k}\right)=\phi\left(E F_{j \prime}^{k}\right)$ for all $k=1, \cdots, n j=1, \cdots, n_{k}$.

Since E is a central projection, $\phi\left(E_{1 \mathrm{k}}^{k}\right)=\phi\left(F_{11}^{k}\right)$ for all trace ϕ on A. By Proposition 3.2[E $\left.E_{11}^{k}\right]=\left[F_{11}^{k}\right]$ in $K_{0}(A)$ and by Proposition 3.3 there exists a partial isometry $V^{k} \in A$ with initial projection E_{11}^{h} and terminal projection F_{11}^{k}.

References

1. K. P. Goodearl, Notes on Real and Complex C^{\dagger}-Algebras, Shvid Publishing Limited, 1982.
2. 0 . Bratteli, Inductive limits of finite dimensional C^{*}-algebras, Trans Amer. Math. Soc 171 (1972), 195-234.
3. J. Cuntz and Pedersen, Equivalence and traces on C^{*}-algebras, J. Functional Analysis 33(1979), 135-164.
4. J. Diximier On some C^{-}-algebras considered by Glimm, J. Functional Analysis I (1967), 182-203.
5. G. Elliott, On the classification of inductive limits of sequences of semi-simple finite dimensional algebrals J. Algebra 38 (1976), 29-44.
6. I. Glimm, On a certain class of operator algebra, Trans. Amer. Math. Soc. 95 (1960), 318-340.

University of Ulsan
Ulsan 690
Korea
Received May 11, 1988

