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MOMENTS OF MODIFIED FACTORIAL SERIES
DISTRIBUTION

KwaAN JooNe KANG

1. Introduction.

A method using finite difference operators has been
reeently introduced in order “to express the moments of
discrete probability distributions.

Berg (1974, 1976) has introduced a new class of discrete
distributions, which he calls Factorial Series Distributions
(FSD) and Gupta(1974) has introduced and studied a class
of distributions called Modified Power Series Distributions
(MPSD).

Janardan(1984) has published some of the ordinary
and factorial moments of FSD and MPSD. For the sake of
completeness, we shall define these classes here.

A discrete random variable(r.v) X is said to have a
MPSD if its probability function (p.f.) is

P(z;0)y=18 (;’;2;;“(“9) for z & T,

where 7T is a countable set of integers and the series
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function

f(&) =;§I,a(x) (g}, a(z)=—1 4 f(6) >0 for z & T

xi

J(#) and g(#) are positive, finite, and differentiable.
A r.v. X is said to have a FSD if its p.f. is given by

o 0®a(x)
P(z0)~ 9082 o1
w026 0 F

where 0 = 8(@—1)---(—x+1) ‘and f(0) = é:r i®a(x),

a(x) > 0 being free of # for x=0,1, ---.

In this paper, we introduce another class of discrete
distributions and provide a method of {indimg-the mmonrents
using finite difference operators.

2. New class of discrete distributions

Following Gupta’s approach, we introduce 2 new classes
called Modified Factorial Series Distributions (MFSD) and
discuss the moments. We define

Can _ .y 18(0)}Pa(x)
(2.1) . P(x;0) = P(X=x) NG , ze T,

where the series function f(ﬁ)=ZeT{g(0)}<‘>a(x), a(x)=
4f£(0)/x!, f(8) and g(f) are nonzero and
(g} =g(0){g(O)-1}--{g(0)—x+1}.

The p.f. (2.1) can be called a Descending Modified
Factorial Series Distribution (Descending MFSD).
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Similary, we define

Oy — — oy 1g@)Ha(x)
(2.2) Pz;0)=P(X=x) e xeT,

where f(ﬁ):élr {g()}®a(x), f(O) and g(d) are nonzero,

{g(0)}1W=g(0){g(d) +1}---(g(0) +x -1},
and

a(x)=4(0)/z!.

The (2.2) can be called 2 Ascending Modified Factorial
Distribution(Ascending MFSD).

Exampre 1.1 In the generalized hypergeametric —distri-

bution
b
P(x)= (-’ﬁ<>a(+72“‘>x >
n

P(x;8)=0@b"Dn® /(F45)™xt, where a=0.

ExXAMPLE 1.2. The inverse polya distribution;

p(x>=(-g/r)(“g/r) N2 D) G
=(—g/r) D (—p/r)® (k';x )k/(-—],/r)“‘”)(k-}-x).

P(2;0) =(—p0) D (~gf)yk{(k+2) 1}/ (—0) =0 (h+2) k! 21,
where 1/7=8.

These Examples 1-1 and 1-2 are Descending MFSD’s.

ExaMpLE 1.3, The polya distribution;

P@=(~57) (R25)/ (A7)
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=( Z Y rmmiames/arm.

P(x;0) = ( p0) 2 (g6) vaxcr*!t / fra*siinatl,  where
1/r=0, x=x, and n—x=x,,
This Example 1.3 is Ascending MFSD.

3. Momenis of MFSD

ProprOSITION 1.

(3.1) if EX'=kz’ c 4%y, EX®=klc,.
=0

3.2y 1If EX’ié.dw*c', EXt=ptd,
=0

The ¢;’'s and d;’s are related to the descending and the
ascending factorial moments.

(3.1) is given in Janardan (1984), (3.2) is obtained as

EXr=3 d,pr

& EXm
_kZ;'o k! P

(3. 3) =&'¥0 EX[!JVlor.
{3.2)-(3.3) is

1:2:0 (djl E:Zi;ﬁ] )V‘OT:O'

EXE&J = k! dﬁ_

THEOREM 1. The moments of p.f. (2.1) are
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s 1g@)}24 f(0—k)  Arxy
3.4) EX _kz_;l 70 Al

o @ISO 1)
3.5 EXM= .
.5 7o)

ProoF. EX'=3 P(x; 6)
=0

_ & {g@)}Pa(x) -
-122,“0 0 (A +4%)0

L4 oa (GO L6 s
LIy Gom!l R

_«w lg@))® = {g(6—R)}Lf(6)) 4*0
-1;2:"1 1)) Ak{y=z0 ! } k!
. {g(@)}® 42 f(6—%) 4*0
e ) kLT

Using (3.3)
EXxn— 1g@0 4f0-r)
f®)

In the example 1-1, let f(@)=(@+ &)/, g(f) =6 and
a(xY=n®/x!.

THeOREM 2. If p.f. (2.2) are

, v (2O)IH LSO+ E) 4O
@6 BX'=p F(6) 3

3.7 EXtn=12@)n4f0+r)
D G

Prook. EXr =% 2’P(z: 6)
=0

_ g {8(0)} “a(x)
= J&)

(1+ D
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o (g0 4F6) My
=LL " e (@-kB! &

(let x—k=y)
L oe [g(O)iurE  rkf(fy 4RO
—kz=:1 yz=o f& y! k!
_ & 2@ e {g(@))9A4f(6) 44
=% ) Ak{yzéo y! } k!
=7 (g} A f(B+k) 4R
251 £ Rl

(3.6) can also be represented by using backward difference
operator

ATy T {g(6)}&d* {6+&) T
G.8) EX El( D J(@ kL

Using (3.4), (3.5) and (3.6)

Exin={8@)} 4 f(6+7)
J&

5. Moments of multivariate MFSD

A random vector X=(x, x, - x,) a m-variate Descen-
ding MFSD of its p.f. is given by

JEO (g (8,) }oma(xy, X, T w)
F(0,,05,-,0.)

- {fi {2@22aX) ),

where f£(0) =1(0,,0,,,8.), a(X)=a(x, -

4.1 P(X:0)=-t&80D

Zp) =4 A5 (O

b
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is independent of 0;’s and i=1,2, ---m,

F@ =T {g(8)}Pa(X), 4, operates only 0.

Similarly, we define a m-variate Ascending MFSD
whose p.f. is given by

(4. 2) P(X; 0): {g(ﬁl)}txl]"'}g(geng}txm;a)(xlyxzs”.,xﬂ)
1,Y2,"""Un

L

THEOREM 3. The moments of the m-vartate Descending
MEPSD {4.1) are given by

4.3) EXXp2 X

_ 2[{11" {g(8.)* 4, :f(60,—k,)} }{ n 4,40, H

I0) iy

(4.4) EXPxi?.x{w

_ 7 18060} 47 B,
=) 8 :

TaEOREM 4. The moments of the m-variate Ascending
MFSD (4.2) are given by

(4. 5) EX:‘X;Z-"X:,‘”

r

:FHH {g(e.-)}ﬂmf g):f(mk,) } {H 429,}]

4.6) EXVxi?.xi™

_py 1£00173 47 (8, +1.)
7
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In Example 1.2, let f(8)=(—8)**® and in Example 1.3
F(6) =(—8)v1*#21, Both are 2-variate case.
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