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NONLINEAR ERGODIC THEOREMS FOR A
NONEXPANSIVE SEMIGROUP IN UNIFORMLY
CONVEX BANACH SPACES

Keun SainG Park, Kwancg Pak Park Anp Jong Kyu Kim

1. Introduction

Baillon ([13) proved the first nonlinear ergodic theorem
tfor nonexpansive mappings: Let C be a closed convex
subset of a Hilbert space H and 7 a nonexpansive mapping
of C in to itself. If the set F(7') of fixed points of T is
nonempty, then for x&(C, the Cesdroc means

converges weakly as 7z — oo to some p=F(T).

A corresponding result for a strongly continuous one
parameter semigroup of nonexpansive mappings S{(¢), £ >0
was proved soon after Baillon’s work by Baillon and Brézis

(rs) ,i.e.,
_ L {*
Alx—-TL S(&yxde

converges weakly as 2-— o0 to a common fixed point of S(£),
£ Q.

These theorems were extended to Banach spaces by
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Baillon ([2]), Bruck ({4]), Hirano ([7]), Reich ({111),
and Takahashi ([12]). By the way, above results are
the cases for existence of weak limit of Cesdro means.
From the example of Genel and Lindenstrauss ([6]), it
follows that there exists a nonexpansive mapping such that
the Cesdaro mean does not converge strongly. Therefore,
Pazy ([101), Kim and Ha ([8]), and Kobayashi and
Miyadera ([9]) give some further assumptions on the
mapping in order to assure the strong convergence of the
Cesdaro means.

In this paper, we prove the existence of strong limit of
the Cesdro means

A,S(h)x:-l-r SCs+h)zds
£ Jo

uniformly in 2 2> 0.

2. Preliminaries and notations

Let C be a closed convex subset of a uniformly convex
Banach space X. A family S={S(): t >0} of mappings
from C into itself is called a nonexpansive semigroup on
C if

(1) S(t+35)=S()S(s) for all £, s> 0,

(2) S(0)=7 (indentity),

(3) }_1331 S)x=x for every x € C,

4) S@Wxz—-SOII < lz—yll for all x,y & C and £>0.

The set of common fixed points of S@), £>0 will be
denoted by F(S)=N F(S(z)). The Cesdro mean of S(z),
=0
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t > 0 will be denoted by
_ap
Ax = i L} S()xdi.

It is easy to see that
__L ! 1 5
AS(hyz =1 j {TJOS(h+$+f?)xdn}dE
+Ar (s= ) {Sh+ma—Sh+t+m)x}tdy
ts Jo

for ¢z, s>0 and A > 0.

3. Main results

Now, we start with the following crucial lemmas to
prove Theorem 3.4.

LemMma 3.1. Let C be a closed convex subset of a
uniformly convex Banach space X and {(Z): ¢t =0} a
nonexpansive semigroup on C. Suppose that Iim |[S(#)x—

{0

S(t+i)xz|l exists uniformly in ¢ > 0. Then we have
lim [L(4,5¢+R T + ASG+h)2)
1 1 [_
~sa(Laswz+Lase x>]1—0
uniformly in A>0. In particular,
m||A,SG+R)a— S A S x[|=0
{0

uniformly in & > 0.

Proor. Let f< F(S) and » > 0 with {lx—f|| = r. Define
the set D =f{zc X: |lz—=fI<r}CC and U@) = SAID
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, the restriction of S(¢) to D. Then D is bounded closed
convex and U (¢) a nonexpansive semigroup on [J. Hence,
by Theorem 2.1 in [5] (cf. [4] Lemma 1.1.), there exists
s strictly increasing, continuous convex function V:R®—
R* with Y(0) =0 such that

B 3 N ”
|ow (% 22)- & 20m =]
<7 max (112, - 21|~ 1U® 2= VB2

$15

k
for any 2;,4,2;, -, 2 20 with 3 2,=1, any x; 23 %,, -,
=0

., €D and any £ =1, A >0. Consequently

(s (E 12+ E 09)-(E 2502+ E 5wz
< 7 max (i, ~ 2,1~ 1S 2, ~ S, I
”xx_yﬁ“_. “S(h)x:— S(h)ypl [s

s — Y= 11S(R)y,~ S(R)v.1l:
0L, 7=n—-1,0=p,g <= m—1})

n-1 m—1
for any 2,,x: 20 with ¥ 2,+X » =1, any x; 3. €D and
1=0 i=0
1

n,m=1, 2> 0. Using this inquality with sz-ét—, &=

2—13, y,=S(s+i)z, and if we shall have

the integral with respect to { instead of the summation.

SE+dzx, p =

Then we have

ll S [ & Se+iyadi+ [ L-Ss+iyaail
|

3

—{ J; 2—l¢ S(h+t+i)adi+ L % S(k+si)xdi}
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= Y M max{l|SG+)x—-SE+5) x|l

—USh+e+D)xz—S(h+t+j)x|l,

HSGE+i)x—S(s+p)xll
—HSh+t+i)x—Sth+s+p)xll,

HS(s+p)z—S(s+g)xll
—ISh+s+p)x—Sh+st+q)xl|:

0=4,j=¢ 0=pqg=s}

for any 5,20 and 2> 0.

For any ¢ >0 choose & >0 such that 771(8) <& Since
%LI;);) HS(H)x—S+i)x|] exists uniformly in >0, there

exists £, = 0 such that
B =SBz —S+i)xl] < BGEY+4
for every ¢>0 and ¢=¢, where B(I) =1lim [|S(2)—
i")’“
S(¢+i)x}]. Hence if s5,# = ¢, then

WS+ x-S+l - 1Sh+E+)x— S(h+s+7)xl
<BUs+j—t—i)+o—-B(s+j—t—2l)=s

for all 7,7 2 0. Consequently, we obtain that if s5,¢ =12,
then

I S(k){ j‘ L S@+iyzdir J 1 S(s+z‘)xdi}

i o 2t "o 2s

SR C s . 3_1 s A1
U, 2-Sthre+idadie || Lo starseiraail|
=778 e

for any A > 0. Therefore, the result holds true. Further-

more, putting s =%, we have
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1}_{2 HAS@E+h)x—Sh)AS@)z|{=0

uniformly in 2 > 0.

LemMa 3.2. Let X,C and {S(¢): ¢t =0} be as in Lemma
3.1. Let x= C and F(S) #¢. If

13:;1 S@#) x-S+ x|

exists uniformly in >0, then {[|A,S()x—f(|} is con-
vergent for every f& F(S).

Proor. Let f&F(S) and

a’:%‘gg HA,S(Z+k)$*S(}Z)A,S(Z)x”

for £ 2 0. Since

1
+3

A8t z= [ HASGH 4z S+ ASE ) dn

I+
+ ?}r—s L S(s+m) A8 zdn

1
RS

1418tz ISat 2 | ISG+m AS@z~Fildy

1
+t(t+s)

SaHIAS@Oz—fIl + 5 llz =S +s)zl|

< a+HlAS@Oz~Fli+——lla—f |

j; (E—m{S(s+t+n)z—S2e+5) +7) z}dn,

[ e=mIISCs+249) 0~ S +5) +2) 2lidn

for all £, s =2 0. Letting s — o0, we have
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lim sup [|A,S()z—fIl = a,+{|AS@z—f1]

for all £ =2 0. Since lim a,=0Q,
1—.‘”

Hm_,gup HAS()z-fII = 1in;l»jonf HAS@EHz—f1.
Hence {[|A,S@#)xz—f]||} is convergent for every f& F(S).

ProposITION 3.3, Let X, C and {S(#):¢=0} be as in
Lemma 3.1. Let x € C and F(S)#£ 4. If

I‘ijg {|IS@B)x—S(t+k)xl]

exists uniformly in 2 >0, then there exists an element
= F(S) such that

I,i.{g ASGE4yhyx =p
uniformly in A = 0,

ProoF. Choose f< F(S) and set w, = A SE) 2—f for
each £ 20. By Lemma 3.2, put lim ||%l]=d. Since lim
{-reo {00

l2¢,,,—2,}|=0 for s = 0, we have
1!1_)% Hetyenvu,lf = 2d

for every A = Q.

Now, we show that {A,S(#)x} is strongly convergent to
an element of F(S). Put

o(t, k) :ﬁ};}—) j; (=) 1ISCh+2+7) 2 — S +E) +n) zl|dn,
then we have

A SErR)z=—1 - I“kA,S(t +&k+n)dy+o(e, k)
t+ ¢
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and
o DIl = =1 Il.
Hence,
Hunﬁuml!:HAMS(Hk)erAST»S(Hk)x-2fil

J
=l A ase ke +AS(sk+n)a=2f 1|

t—s

+ (Hk)(SJPk) J’l {AS(st+k+n)—fldy

- sjk f {AS(s+E+n)—fldn+o, k) +v(s, k)

< 2 [T ASCr b2+ ASGs k)2 —fldn

D iz i (e + )il

for all s=¢2=0 and 2= 0. On the other hand, put

a, —-sup“ (ASE+h)x+AS(s+h)x)
-5 (Las@zr L Las@z) |
then we have

4

_Z-(A,S(t+k+n)x+A,S(s+k+n)x)—-fH

< o+ [ L (ASO 2+ A,86)2) - f“
Therefore, we obtain

Notrost it sl | < 200, 4 g ] | 428 =2) 2(5 D iz 1y

Hdr + 5 )ux A1

for all s 22 =0 and 2= 0. Letting # - c0, we have
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2d = 200+ 1w+ ull = 200+ ][+ a]

for every ¢, 5 2 0. Since lim «,, =0 by Lemma 3.1,

—»0
L

we
‘have that lim |lu,+u.)}=2d. By uniform convexity of X
tgs®

and Iiﬂg le,l|=d, we obtain
tlim NAS(&)x— AS(s)x||= lim ||u,—ul}|=0.
,592 1,59%

Hence {A,S(¢)x} converges strongly. Put
p= 1,1.32‘ AS@®)x.
Since for all A 20,
HAS () x—-S(h)A,SE) x|
gM FIIA,S(+R) 2~ S ASE 2.

Letting 2 — o0 and hence p& F(S) from Lemma 3.1.
Since

sup HASGE+R)z—pl| < sup HASE+R)x—S(RYAS(E) x|
+IS(R) A, S@)z—pl]
= sup A,S(E+RYz— S(R)ASE) x|
+||A,S(@)xz—pll.

Letting ¢ — oo, then {A,S(¢+h)x} converges strongly to
& F(S) uniformly in b = 0.

Now, we conclude this section with consequence of our
previous results,

TueorEM 3.4. Let C be a closed convex subset of a
uniformly convex Banach space X and {S@)::=0} a
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nonexpansive semigroup on C. Let x € C and F(S) # ¢.
1f 11_’15 NS(&)x—S{E+h) x|} exists uniformly in 2>0, then

{A;S(h)x} converges strongly to a common fixed point
pE F(S) uniformly in A=0.
Proor. By virture of Proposition 3.3, there exists an
element p € F(S) such that lim A,S(¢+k)x=p uniformly
proe

in £ = 0. Therefore, for any ¢>0 there exists # >0 such
that

[| A S(te+R)Yx—p|] < e
for all 2 2 0. Since

ASEYz=1[ A, Sh+mady
0
s [ o= S+ 2 - SCr+ Bt D) z)dn,
g JO

if £2>¢, then

1ASE z—pll S~ | 1A SChtm)—plldn-+-- llz2—ll
< [P NAGSh+mz—plidy

+ 1" WA, Sth+ma—plidn+ L llz—pl]
‘0

1 [ toe
<L [*na, s@+m—plidn+e—1

+~'§°—1|x~pl|

for all A = 0. Hence we have 1{1—’13 A,S(hYx=4p.
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