ON THE ASYMPTOTIC BEHAVIOR OF RESOLVENTS OF ACCRETIVE OPERATORS IN BANACH SPACES

JONG SOO JUNG

1. Introduction

Let (E, || ||) be a real Banach space and let I denote the identity. Recall that an operator $A \subset E \times E$ with domain D(A) and range R(A) is said to be accretive if $||x_1-x_2|| \le ||x_1-x_2+r(y_1-y_2)||$ for all $y_i \in Ax_i$, i = 1, 2,and r > 0. An accretive operator $A \subset E \times E$ is *m*-accretive if R(I+rA) = E for all r > 0. Let $J_t = (I+tA)^{-1}$, t > 0, be the resolvent of A and assume that $0 \in R(A)$. It is known that if E is a Hilbert space, then for each x in E, the strong $\lim J_i x$ exists and belongs to $A^{-1}0$. This result was extended to a restricted class of Banach spaces in [3,4]. In particular, Reich [6] showed that it is true under the assumption that E is a uniformly smooth Banach space, and that A is m-accretive. Rather unexpectedly, his proof involves the fixed point property for nonexpansive mappings.

In this paper, we establish a strong convergence theorem for resolvent $J_t x$ as $t \to \infty$ in a certain Banach JONG SOO JUNG

space without using the fixed point property for nonexpansive mappings. Further we apply it to a new convergence result for an implicit iterative scheme.

2. Preliminaries

Let E be a real Banach space and let E^* its dual. $U = \{x \in E: ||x|| = 1\}$ be unit sphere of E. Recall that the nom of E is said to be Gâteaux differentiable (and E is said to be smooth) if

 $\lim_{x \to 0} (||x + ty|| - ||x||)/t$

exists for each $x, y \in U$. It is said to be uniformly Gâteaux differentiable if for each y in U, this limit is attained uniformly as x varies over U. We shall write that E is (UG). The norm is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit is attained uniformly for $(x, y) \in U \times U$. Since E is uniformly smooth if and only if its dual E^* is uniformly convex, every Banach space with a uniformly convex dual is reflexive and (UG). But there are 'spaces E such that E is reflexive and (UG), but E is not even isomorphic to a uniformly smooth space [7, p.149]. A discussion of these and related concepts may be found in [2].

The duality map from E into the family of nonempty subset of E^* is defined by

$$J(x) = \{x^* \in E^*: (x, x^*) = ||x||^2 = ||x^*||^2\}$$

for each x in E, J is single-valued if and only if E is

smooth.

Recall that a Banach limit LIM is a bounded linear functional on l^{∞} of norm 1 such that

$$\liminf_{n \to \infty} t_n \leq \text{LIM} \ t_n \leq \limsup_{n \to \infty} t_n$$

and

LIM $t_n = \text{LIM } t_{n+1}$

for all $\{t_n\}$ in l^{∞} . Let $\{x_n\}$ be a bounded sequence in E. Then we can define the real valued continuous convex function ϕ on E by

 $\phi(E) = \text{LIM} ||x_n - z||^2$

for each $z \in E$.

By the method of [7], we obtain the following.

LEMMA 1. Let C be a nonempty closed convex subset of a Banach space E with a uniformly Gâteaux differentiable norm, let $\{x_n\}$ be a bounded sequence in E, and let LIM be a Banach limit. Let $u \in C$. Then

LIM $||x_n - u||^2 = \inf \{ ||x_n - z||^2 : z \in C \}$

if and only if LIM $(z-u, J(x_n-u)) \leq 0$ for all $z \in C$.

PROOF. For z in C, and $0 \le t \le 1$, we have

$$||x_n-u||^2 = ||x_n-tu-(1-t)z+(1-t)(z-u)||^2$$

$$\geq ||x_n-tu-(1-t)z||^2$$

$$+ 2(1-t)(z-u, J(x_n-tu-(1-t)).$$

Let $\varepsilon > 0$ be given. Since the norm of E is uniformly Gâteaux differentiable, the duality mapping is uniformly continuous on bounded subsets of E from the strong topology of E to the weak-star topology of E^* . Therefore

$$||(z-u, J(x_n-tu-(1-t)z)-J(x_n-u))|| < \varepsilon$$

if t is close enough to 1. Consequently, we have

$$(z-u, J(x_n-u)) < \varepsilon + (z-u, J(x_n-tu-(1-t)z))$$

$$\leq \varepsilon + \frac{1}{2(1-t)} \{ ||x_n-u||^2 - ||x_n-tu - (1-t)z||^2 \}$$

and hence

$$\operatorname{LIM} (z-u, J(x_n-u))$$

$$\leq \varepsilon + \frac{1}{2(1-t)} \{\operatorname{LIM} ||x_n-u||^2 - \operatorname{LIM} ||x_n-tu||^2 - (1-t)z||^2 \} < \varepsilon.$$

Therefore, we have $\text{LIM}(z-u, J(z_n-u)) \leq 0$ for all $z \in C$. We prove the converse. Let $z, u \in C$. Then, since

 $||x_n-z||^2 - ||x_n-u||^2 \ge 2(u-z, J(x_n-u))$

for all *n* and LIM $(x-u, J(x_n-u)) \leq 0$, we have

LIM $||x_n - u||^2 = \inf \{ LIM ||x_n - z||^2 : z \in C \}.$

REMARK. In Lemma 1, if C=E, then, for $u \in E$,

 $LIM || x_n - u ||^2 = \inf \{ LIM || x_n - z ||^2 : z \in E \}$

if and only if LIM $(z, J(x_n-u)) = 0$ for all $z \in E$.

Let D be a subset of E. Then we denote the closure of D by cl(D) and its distance from a point x in E by d(x, D). We also denote the set $\{y \in D : ||y|| = d(0, D)\}$ by D^{0} .

We conclude this section with the following lemma which is essentially well known. (cf. [1. p. 79].)

LEMMA 2. Let E be a Banach space and let C be a closed convex subset of E. If E is reflexive and strictly convex, then C^0 is a singleton.

3. Main results

Recall that an operator $A \subseteq E \times E$ is accretive if and only if for each $x_i \in D(A)$ and $y_i \in Ax_{i,i} = 1, 2$, there exists $j \in J(x_1-x_2)$ such that $(y_1-y_2, j) \ge 0$. If A is accretive, we can define, for each positive r, the resolvent of A, $J_r : R(I+rA) \to D(A)$ by $J_r = (I+rA)^{-1}$ and the Yosida approximation of A, A_r : $R(I+rA) \to E$ by $A_r = \frac{1}{r}(I-J_r)$. We know that $A_rx \in AJ_rx$ for every $x \in R(I+rA)$ and that $||A_rx|| \le |Ax|$ for every $x \in D(A)$ $\cap R(I+rA)$, where $|Ax| = \inf\{||y|| : y \in Ax\}$. We also know that $A^{-1}0 = F(J_r)$ for each r > 0, where $F(J_r)$ is the set of fixed points of J_r .

LEMMA 3. Let E be a Banach space, let $A \subseteq E \times E$ be an accretive operator that satisfies the range condition: $R(I+rA) \supset cl(D(A))$ for all r > 0.

(1) If there exists $\{t_n\}$ with $t_n \to \infty$ and $y = \lim_{n \to \infty} J_{t_n} x$, then $y \in A^{-1}0$.

(II) If E is smooth and there exist $\{t_n\}$ and $\{s_n\}$ such that $t_n \to \infty$, $y = \lim_{n \to \infty} J_{t_n} x$ and $z = \lim_{n \to \infty} J_{s_n} x$, then y = z.

PROOF. (1) Let r > 0. Since $y = \lim_{n \to \infty} J_{t_n}$ and hence $\{J_{t_n}x\}$ is bounded, we have

$$||J_r J_{t_n} x - J_{t_n} x|| \leq r |A J_{t_n} x| \leq r ||(x - J_{t_n} x)/t_n|| \to 0,$$

as $n \to \infty$. Then we have $J_r y = y$ and hence $y \in A^{-1}0 = F(J_r)$.

(I) Since $z \in A^{-1}0$ and A is an accretive operator, we have

$$(J_{i_n}x-x, J(J_{i_n}x-z))\leq 0$$

and hence $(y-x, J(y-z)) \le 0$. Similarly, we have $(z-x, J(z-y)) \le 0$. Therefore $(y-z, J(y-z)) \le 0$, that is, y=z.

Now we establish the behavior of $J_t x$ as $t \to \infty$.

THEOREM 1. Let E be a reflexive and strictly convex Banach space, and let $A \subset E \times E$ be an accretive operator that satisfies the range condition. Let C be a closed convex subset of E such that $cl(D(A)) \subset C \subset \bigcap_{r>0} R(I+rA)$. If E is (UG) and $0 \in R(A)$, then for each x in C, $\lim_{t \to \infty} J_t x$ exists and belongs to $A^{-1}0$.

PROOF. Fix a point x in C and a positive r. Let $t_n \to \infty$, $x_n = J_{i_n} x$ and $y_n = (x - x_n)/t_n$. Then, since $A^{-1} \neq \phi$, $\{x_n\}$ is bounded. So for a Banach limit LIM, we can define a real valued function ϕ on C by

 $\phi(z) = \mathrm{LIM}||x_n - z||^2$

for each $z \in C$. Since ϕ is continuous, convex and $\phi(z) \to \infty$ as $||z|| \to \infty$ while E is reflexive, it attains its infimum over C. Let

$$K = \{ u \in C : \phi(u) = \inf\{\phi(z) : z \in C\} \}.$$

Then it follows that K is nonempty, closed, convex and bounded. Furthermore, K is invariant under J_r . In fact, since $||J_rx_n - x_n|| \to 0$ as $n \to \infty$, we have for each $u \in K$,

$$\phi(J_r u) = \operatorname{LIM} ||x_n - J_r u||^2$$

= LIM ||J_r x_n - J_r u||^2
 $\leq \operatorname{LIM} ||x_n - u||^2 = \phi(u).$

We also observe that K contains a fixed point of J_r . To see this, let $w \in A^{-1}0$ and define

$$K' = \{ u \in K : ||u - w|| = d(w, K) \}.$$

By Lemma 2, K' is a singleton. Denote such a singleton by v. Then $||J_rv-w|| = ||J_rv-J_rw|| \le ||v-w||$, so that $J_rv = v$. Since $v \in A^{-1}0$ and A is accretive, we have, on the one hand, $(x_n-x, J(x_n-v)) \le 0$ for all n and hence

$$\operatorname{LIM}(x_n - x, \ J(x_n - v)) \le 0.$$
(1)

Since $v \in K$, by Lemma 1, we have, on the other hand,

 $\mathrm{LIM}(z-v, J(x_n-v)) \leq 0$

for all $z \in C$. Putting z = x, we have

 $\operatorname{LIM}(x-v, \ J(x_n-v)) \leq 0.$ ⁽²⁾

Combining (1) and (2), we have $\text{LIM}||x_n-v||^2 \leq 0$. Thus there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ which converges strongly to v. Therefore, by Lemma 3, we obtain that $\lim_{t \to \infty} J_t x = v$.

COROLLARY 1. Let *E* be a reflexive and strictly convex Banach space. Let $A \subset E \times E$ be an accretive operator that satisfies the range condition and $0 \in R(A)$. If *E* is (UG) and cl(D(A)) is convex, then for each $x \in cl(D(A))$, $\lim_{t \to \infty} J_t x$ exists and belongs to $A^{-1}0$.

PROOF. Putting C = cl(D(A)), we can obtain the desired

JONG SOO JUNG

result.

COROLLARY 2. Let E be a reflexive and strictly convex and let $A \subset E \times E$ be an *m*-accretive operator. If E is (UG) and $0 \in R(A)$, then for each $x \in E$, $\lim_{t \to \infty} J_t x$ exists and belongs to $A^{-1}0$.

PROOF. Putting C = E, we can obtain the desired result.

4. Application

We consider the implicit iterative scheme

$$x_{n+1} - x_n + h_{n+1}(y_{n+1} + p_{n+1}(x_{n+1} - z)) = w_{n+1}, n \ge 0$$
(3)

where $z \in E$, $y_n \in Ax_n$, $\sum_{n=1}^{\infty} |w_n| < \infty$, and $\{h_n\}$ and $\{p_n\}$ are positive sequences such that $\{p_n\}$ decreases to 0, $\{h_n p_n\}$ is bounded, $\sum_{n=1}^{\infty} h_n p_n = \infty$ and $\lim_{n \to \infty} (p_{n-1}/p_n - 1)/p_n h_n = 0$.

Corollary 2 implies that [5. Theorem] is valid in all Banach spaces, which are (UG), reflexive and strictly convex.

THEOREM 2. Let E be a reflexive and strictly convex Banach space, and let $A \subset E \times E$ be *m*-accretive. If E is (UG) and $0 \in R(A)$, then sequence $\{x_n\}$ defined by (3) converges strongly to a zero of A.

References

- V. Barbu and Th. Precupanu, "Convexity and Optimization in Banach Spaces," Editura Academiei R.S.R., Bucuresti, 1978.
- M. M. Day, "Normed Linear Spaces," 3rd ed., Springer-Verlag, Berlin/New York, 1973.
- S. Reich, Approximating zeros of accretive operators, Proc. Amer. Math. Soc. 51 (1975), 381-384.
- _____, Extension problems for accretive sets in Banach spaces, J. Functional Analysis 26 (1977), 378-395.
- <u>____</u>, Constructing zeros of accretive operators, Applicable Analysis 8 (1979), 349-352.
- _____, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292.
- Product formula, nonlinear semigroups, and accretive operators, J. Functional Analysis 36 (1980), 147-168.

Dong-A University Pusan 604-714 Korea

Received March 26, 1988