SOME PROPERTIES OF COMPLETELY POSITIVE MAP

An Hyun Kim

1. Introduction

In [1], Arveson stated that the correspondence between commutant of $\bar{\pi}(a)$ and the set of completely positive maps is an affine order isomorphism. This note states that the extension of B-valued inner product can not be carried out for even the simplest sort of pre-Hilbert B-module unless B is at least an $A W^{*}$-algebra [Theorem 2.9].

In § 3, in addition to Arveson's statements, it is also given that the correspondence preserves convex combinations [Theorem 3.5] and an equivalence condition for completely positive map [Theorem 3.6].

2. Preliminaries

Definition 2.1. Let B be a C^{*}-algebra. A pre-Hilbert B-module is a right B-module X equipped with a conjugate bilinear map $\langle\rangle:, X \times X \longrightarrow B$ satisfying:
(i) $\langle x, x\rangle \geq 0 \quad \forall x \in X$;
(ii) $\langle x, x\rangle=0$ only if $x=0$;
(iii) $\langle x, y\rangle=\langle y, x\rangle *$ for $x, y \in X$;
(iv) $\langle x \cdot b, y\rangle=\langle x, y\rangle b$ for $x, y \in X, b \in B$.

The map 〈, > will be called a B-valued inner product on X.

Example 2.2. If J is a right ideal of B, then J becomes a pre-Hibert B-module when we define \langle,$\rangle by \langle x, y\rangle=y^{*} x$ for $x, y \in J$.
For a pre-Hilbert B-module X, define $\|\cdot\|_{x}$ on X by $\left\|\left.x\right|_{x}=\right\|\langle x, x\rangle \|^{\frac{1}{2}}$.

Proposition 2.3. $\|\cdot\|_{X}$ is a norm on X and satisfies:
(i) $\|x \cdot b\|_{x} \leq\|x\|_{x}\|b\|$ for $x \in X, b \in B$;
(ii) $\langle x, y\rangle^{*}\langle x, y\rangle \leq\|y\|^{2}{ }_{x}\langle x, x\rangle$ for $x, y \in X$;
(iii) $\|\langle x, y\rangle\| \leq\|x\|_{x}\|y\|_{x}$ for $x, y \in X$.

Proof. [5], [8].
Definition 2.4. A pre-Hilbert B-module X which is complete with respect to $\|\cdot\|_{x}$ will be called a Hilbert B module.

Remark 2.5. For a pre-Hilbert B-module X, we let $O l(X)$ denote the set of operators $T \in B(X)$ for which there is an operator $T^{*} \in B(X)$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for $x, y \in X$. That is $\sigma(X)$ is the set of bounded operators on X which possess bounded adjoint with respect to the B-valued inner product. It is easy to see that for $T \in$ $O l(X)$, the adjoint T^{*} is unique and belongs to $O l(X)$, so $\sigma_{i}(X)$ is a *-algebra with involution $T \rightarrow T^{*}$.

Lemma 2.6. $o t(X)$ consists of entirely module maps. i. e. if $T \in O L(X)$, then $T(x \cdot b)=(T x) \cdot b$ for $x \in X$, $b \in B$.

Proof. Take $y \in X$. Then by properties of B-valued inner product,

$$
\begin{aligned}
\langle T(x \cdot b), \quad y\rangle & =\left\langle x \cdot b, T^{*} y\right\rangle \\
& =\left\langle x, T^{*} y\right\rangle b \\
& =\langle T x, \quad y\rangle b=\langle(T x) \cdot b, y\rangle .
\end{aligned}
$$

For the balance of this section, A will be a C^{*}-algebra, B a closed $*$-subalgebra of A, X a pre-Hilbert B-module, and Y a pre-Hilbert A-module.

Lemma 2.7. For a linear map $T: X \longrightarrow Y$ the followings are equivalent:
(i) T is a bounded module map of B.
(ii) There is a real $K \geq 0$ such that $\langle T x, T x\rangle_{A}<$ $K\langle x, x\rangle_{B}$ for $x \in X$.

Proof. [1], [5].
We let X^{\prime} denote the set of bounded B-module maps of X into B. By 2.7 (with $A=B=Y$), X^{\prime} is precisely the set of inear maps $\tau: X \longrightarrow B$ for which there is a real $K \geq 0$ such that $\tau(x)^{*} \tau(x) \leq K\langle x, x\rangle$ for $x \in X$. Each $x \in X$ gives rise to a map $\hat{x} \in X^{\prime}$ defined by $\hat{x}(y)=\langle y, x\rangle$ for $y \in X$. We will call X self-dual if $\hat{X}=X^{\prime}$. According to $[5$, p. 451$], X^{\prime}$ is a pre-Hilbert B-module, that is, \langle, can be extended to a B-valued inner product on X^{\prime} and the extension satisfies $\langle\hat{x}, \tau\rangle=\tau(x)$ for $x \in X$ and $\tau \in X^{\prime}$.

Theorem 2.8. Let X and Y be pre-Hilbert A-modules and $T: X \longrightarrow Y$ a bounded module map. Then (i) There exists a bounded module map $\tilde{T}: X^{\prime} \longrightarrow Y^{\prime}(i i)(\tilde{T} \hat{x})(y)=$ $(T x)(y)$ for $x \in X$ and $y \in Y$.
[roof. (i) Define $T^{*}: Y \longrightarrow X^{\prime}$ by $\left(T^{*} y\right)(x)=\langle T x, y\rangle$
for $y \in X, x \in X$. By Schwarz's inquality $\left\|\left(T^{\#} y\right)(x)\right\| \leq$ $\|T\|\|x\|\|y\|$, so $T^{\#}$ is bounded. Also since

$$
\begin{aligned}
\left(T^{*}(y \cdot b)\right)(x) & =\langle T x, y \cdot b\rangle=\langle y \cdot b, T x\rangle^{*} \\
& =(\langle y, T x\rangle b)^{*}=b^{*}\langle y, T x\rangle^{*} \\
& =b^{*}\langle T x, y\rangle=\left(\left(T^{*} y\right) \cdot b\right\rangle(x),
\end{aligned}
$$

T^{*} is a bounded module map.
Define $\tilde{T}: X^{\prime} \longrightarrow Y^{\prime}$ by $(\tilde{T} \tau)(y)=\left\langle T^{*} y, \tau\right\rangle$ for $y \in Y$, $\tau \cong X^{\prime}$. Since \tilde{T} is just ($\left.T^{*}\right)^{*}, \tilde{T}$ is a bounded module map also.
(ii) From the following observation, (ii) is immediate. That is, for $x \in X, y \in \underline{Y}$,

$$
\begin{aligned}
(\tilde{T} \hat{x})(y) & =\left\langle T^{*} y, \hat{x}\right\rangle=\left\langle\hat{x}, T^{*} y\right\rangle^{*} \\
& =\left(\left(T^{*} y\right)(x)\right)^{*}=\langle T x, y\rangle^{*} \\
& =\langle y, T x\rangle=(T x) \widehat{(} y) .
\end{aligned}
$$

Theorem 2.9. Let B be a C^{*}-algebra with the property that for every right ideal J of B, there is a B-valued inner product \langle,$\rangle on J^{\prime}$ satisfying $\langle\hat{x}, \tau\rangle=\tau(x)$ for all $x \in J, \tau \in J^{\prime}$. Then B is an $A W^{*}$-algebra.

Proof. Let J be a right ideal of B. For $a \in B$, define $\tilde{a} \in J^{\prime}$ by $\vec{a}(x)=a^{*} x(x \in J)$ and let $\tau_{\tau} \in J^{\prime}$ denote the inclusion of J into B. Notice $\tau_{i} \cdot a=\tilde{a}$ for $a \in B$ and that $\tilde{x}=\hat{x}$ for $x \in J$.

Put $q=\left\langle\tau_{i}, \tau_{2}\right\rangle$. Then $q=q^{*}$ and $x \in J, q x=\tilde{q}(x)$. By the way,

$$
\begin{aligned}
\tilde{q}(x)=\left\langle\tau_{i} \cdot x, \tau_{\Delta}\right\rangle & =\left\langle\bar{x}, \tau_{\Delta}\right\rangle \\
& =\left\langle\hat{x}, \tau_{i}\right\rangle=\tau_{1}(x)=x .
\end{aligned}
$$

So we have

$$
\begin{aligned}
q^{2}=\left\langle\tau_{i} \cdot q, \tau_{i}\right\rangle & =\left\langle\tilde{q}, \tau_{1}\right\rangle \\
& =\left\langle\tau_{1}, \tau_{1}\right\rangle=q,
\end{aligned}
$$

i. e., q is a projection. Put $p=1-q$, so p is a projection in $L(J)$, where $L(J)$ is the left annihilator of J. For self-adjoint element a of $L(J)$, we have $\tilde{a}=0$, so

$$
\begin{aligned}
q a & =\left\langle\tau_{2} \cdot a, \tau_{\imath}\right\rangle \\
& =\left\langle\tilde{a}, \tau_{t}\right\rangle=0,
\end{aligned}
$$

which shows that $a p=a$ for all $a \in L(J)$. That is, $L(J)$ is a principal ideal generated by some projection p.

3. Completely positive maps

Definition 3.1. Let B be a C^{*}-algebra, A a $*$-algebra and $\phi: A \longrightarrow B$ a linear map. We call ϕ positive if $\phi\left(a^{*} a\right) \geq 0 \quad \forall a \in A$.

For $n=1,2, \cdots, \phi$ induces a map ϕ_{n} from algebra $A_{(n)}$ of $n \times n$ matrices with entries in A (made into a $*$-algebra by setting $\left[a_{i j}\right]^{*}=\left[a_{i j}{ }^{*}\right]$ for matrices $\left.\left[a_{i j}\right] \in A_{(n)}\right)$ into the corresponding $C^{*-\text { algebra }} B_{(n)}$ defined by $\phi_{n}\left(\left[a_{1,2}\right)=\right.$ $\left[\phi\left(a_{2 j}\right)\right]$; we say that ϕ is completely positive if each of the induced map ϕ_{n} is positive.

REMARK 3.2. According to [7, p. 194.], a linear map $\phi: A \longrightarrow B$ is completely positive if and only if

$$
\sum_{i, j} b_{2} * \phi\left(a_{2}^{*} a_{j}\right) b_{2} \geq 0 \text { for } a_{1}, \cdots, a_{n} \in A, b_{1}, \cdots, b_{n} \in B
$$

Let ϕ be a completely positive and suppose in addition that $\phi\left(a^{*}\right)=\phi(a)^{*}$ for $a \in A$. The map ϕ give rise to a pre-Hilbert B-module as follows: consider the algebraic
tensor product $A \times B$, which becomes a right B-module when we set $(a \otimes b) \cdot \beta=a \otimes b \beta$ for $b, \beta \in B, a \in A$.

Define

$$
\left.\begin{array}{rl}
{[,]:} & (A \otimes B) \times(A \otimes B) \longrightarrow
\end{array}\right) \quad \begin{aligned}
&\left(\sum_{j=1}^{n} a_{j} \otimes b_{j}, \sum_{i=1}^{m} \alpha_{i} \otimes \beta_{i}\right) \longrightarrow {\left[\sum_{j=1}^{n} a_{j} \otimes b_{3}, \sum_{i=1}^{m} \alpha_{i} \otimes B_{i}\right] } \\
&=\sum_{i, j} \beta_{i} *_{\rho}\left(\alpha_{i} *_{j}\right) b_{j}
\end{aligned}
$$

for $a_{1}, \cdot a_{n}, \alpha_{1}, \cdots, \alpha_{m} \in A, b_{1} \cdots b_{n}, \beta_{1}, \cdots, \beta_{m} \in B$.
$[$, $]$ is clearly well-defined and conjugate-bilinear. Since ψ is completely positive, for with $x \in A \otimes B,[x, x] \geq 0$, since ϕ is $*-\mathrm{map},\left[x, y_{:}^{-}=[y, x]^{*}\right.$, and $[x \cdot b, y]=[x, y] b$ for $x, y \in A \otimes B$ and $b \in B$.
Put

$$
N=\{x \in A \otimes B:[x, x]=0\}
$$

Then N is a submodule of $A \otimes B$ and $X_{0}=A \otimes B / N$ is a pre-Hilbert B-module with B-valued inner product

$$
\langle x+N, y+N\rangle=[x, y] \quad \text { for } x, y \in A \otimes B
$$

Following T. W. Palmer [3], we call an element v of the *-algebra A quasi-unitary if $v v^{*}=v^{*} v=v+v^{*}$ and say that A is a U^{*}-algebra if it is the linear span by its quasiunitary elements. All Banach *-algebras are U^{*}-algebra and A is a U^{*}-algebra iff it is spanned by its unitaries [3].

Theorem 3.3. Let A be a U^{*}-algebra with $1, B$ a C^{*-} algebra with 1 , and $\phi: A \longrightarrow B$ a completely positive map. Then
(i) there is a Hilbert B-module X, a $*$-representation π of A on X, and an element $e \in X$ such that $\phi(a)=\langle\pi(a) e, e\rangle$ for $a \in A$.
（ii）the set $\{\pi(a)(c \cdot b): a \in A, b \in B\}$ spans a dense subspace of X ．

Proof．［5］，［6］，［7］．In particular，note that $\pi(a)(x+N)$ $=a \cdot x+N \forall x \in A \otimes B$ and $\pi(a) \in O R(X)$（i．e．，$\pi(a)$ is a B－module map），X a completion of X_{0} ．

Let A be a U^{*}－algebra with 1 ，and B a C^{*}－algebra．If X, π and $e(e=1 \otimes 1+N)$ are as in 3.3 ，we may define a ＊－representation π of A on the self－dual Hilbert B－module X^{\prime} by $\tilde{\pi}(a)=\pi(a)^{\sim} \in O l\left(X^{\prime}\right)$ for $a \in A$ ．Suppose $\phi . A \longrightarrow B$ is anothor completely positive map．We write $\phi \leq \phi$ if $\phi-\phi$ is completely positive and let $\left[0, \rho^{\prime}\right.$ denote the set of completely positive maps from A inte B which are $二 \phi$ ．

For $T \in o r\left(X^{\prime}\right)$ ，define $\phi_{i} \cdot A \longrightarrow B$ by $\dot{\phi} ;(a)=\langle T \hat{n}(a) \hat{e}, \hat{e}\rangle$ ． Notice that $\dot{\phi}_{1}=\phi$ and that the map $T \longrightarrow \dot{\varphi}_{T}$ is a linear map of $O L\left(X^{\prime}\right)$ into the space of linear transformations of ts into B ，also that X^{\prime} becomes a right B－module if we set $(\tau \cdot b)(x)=b *_{\tau}(x)$ for $\tau \in X^{\prime}, b \in B, x \in X$ ．

Lemma 3．4．Let A be a C^{*}－algebra with l and let $a \in A$ ， $a=0$ ．Then there exists a unique element $b \in A$ such that $b こ 0$ and $b^{2}=a$ ．

Proor．［2］，［7］．
Theorem 3．5．Under the above circumstances，
（i）for each $T \in \vec{\pi}(A)^{\prime}$ with $0 \leq T \leq I_{x^{\prime}}$ ，the formula $\phi_{T}(a)=\langle T \tilde{\pi}(a) \hat{e}, \hat{e}\rangle$ defines a completely positive map such that $\phi_{T} \leq \phi$ ；
（ii）the correspondence $T \longrightarrow \phi_{T}$ described in（i）is a bijection of $\left\{T \in \bar{\pi}(A)^{\prime}: 0 \leq T \leq I_{x^{\prime}}\right\}$ onto $[0, \phi]$ ；
（iii）the correspondence preserves convex combinations，
where $\tilde{\pi}(A)^{\prime}$ denotes the commutant of $\pi(A)$ in $O l\left(X^{\prime}\right)$.
Proof. (i) For $a_{1}, \cdots, a_{n} \in A$ and $b_{1}, \cdots, b_{n} \in B$, set $x=\sum_{j=1}^{n} \pi\left(a_{j}\right)\left(e \cdot b_{s}\right) \in X$ (by 3.3 , this is possible). Then

$$
\sum_{s, j} b_{2} *_{\phi_{T}}\left(a_{t} * a_{s}\right) b_{j}=\sum_{i, j} b_{2} *\left\langle T \tilde{\pi}\left(a_{i} * a_{j}\right) \hat{e}, \hat{e}\right\rangle b_{J}
$$

$$
=\Sigma\left\langle T \tilde{\pi}\left(a_{t} * a_{j}\right) \hat{e} \cdot b_{j}, \hat{e} \cdot b_{t}\right\rangle
$$

$$
=\sum\left\langle T \tilde{\pi}\left(a_{t}\right) \hat{e} \cdot b_{s}, \tilde{\pi}\left(a_{i}\right) \hat{e} \cdot b_{i}\right\rangle
$$

$$
\text { (since } T \in \tilde{\pi}(A)^{\prime} \text {) }
$$

$$
=\left\langle T\left(\sum \tilde{\pi}\left(a_{3}\right) \hat{e} \cdot b_{3}\right), \quad \sum \tilde{\pi}\left(a_{2}\right) \hat{e} \cdot b_{1}\right\rangle
$$

$$
=\left\langle T \Sigma \tilde{\pi}\left(a_{y}\right)\left(e \cdot b_{y}\right)^{\wedge}, \sum \tilde{\pi}\left(a_{1}\right)\left(e \cdot b_{t}\right)^{\wedge}\right\rangle
$$

(by the above notice)

$$
\left.=\prime T\left(\Sigma \tilde{\pi}\left(a_{i}\right)\left(e \cdot b_{i}\right)\right)^{\wedge},\left(\sum \pi\left(a_{i}\right)\left(e \cdot b_{i}\right)\right)^{\wedge}\right\rangle
$$

$$
\text { (by } 2.8 \text {) }
$$

$$
=\langle T \hat{x}, \hat{x}\rangle
$$

$$
=\left\langle T^{\frac{1}{2}} \hat{x}, T^{\frac{1}{2}} \hat{x}\right\rangle \geq 0(\text { by } 3.4)
$$

Thus ϕ_{T} is completely prositive. But $\phi_{T} \leq \phi$ is to be shown in (ii).
(ii): If $T \in \tilde{\pi}(A)^{\prime}$ and $\phi_{T}=0$, then

$$
\begin{aligned}
\left\langle T\left(\pi\left(a_{1}\right)(e \cdot b)\right)^{\wedge},\right. & \left.\left(\pi\left(a_{2}\right)(e \cdot b)\right)^{\wedge}\right\rangle \\
= & \left\langle T \tilde{\pi}\left(a_{1}\right)\left(e \cdot b_{1}\right)^{\wedge}, \tilde{\pi}\left(a_{2}\right)(e \cdot b)^{\wedge}\right\rangle \\
= & \left\langle T \tilde{\pi}\left(a_{2} a_{1}\right)\left(e \cdot b_{1}\right)^{\wedge},\left(e \cdot b_{2}\right)^{\wedge}\right\rangle \\
= & \left\langle T \tilde{\pi}\left(a_{2} a_{1}\right) \hat{e} \cdot b_{1}, \vec{e} \cdot b_{2}\right\rangle \\
& =b_{2} *\left\langle T \tilde{\pi}\left(a_{2}^{*} a_{1}\right) \hat{e}, \hat{e}\right\rangle b_{1} \\
& =b_{2}^{*} \phi_{T}\left(a_{2} * a_{1}\right) b_{1}=0 \\
\text { for } a_{1}, a_{2} \in A, \quad b_{1}, b_{2} \in & B .
\end{aligned}
$$

So $\left\langle T\left(\hat{X}_{0}\right), X_{0}\right\rangle=0$, or $\langle T(X), X\rangle=0$; hence $T=0$ by 2.8 . Thus the correspondence is one-one.

To show that the conespondence is onto, take $\psi \in[0, \phi]$. By 3.3 there exists a $*$-representation ρ of A on a Hilbert
B-module Y and a $d \in Y$ such that $\phi(a)=\langle\rho(a) d, d\rangle$ for $a \in A$ and the set $\{\rho(a)(d \cdot b): a \in A, b \in B\}$ spans a dense subspace Y_{0} of Y. Since $\phi \leq \phi$, there is a welldefined bounded module map $W: X_{0} \rightarrow Y_{0}$ such that $W(\pi(a)(e \cdot b))=\rho(a)(d \cdot b)$ for $a \in A, b \in B$ and $\left\langle w_{x}, w_{x}\right\rangle \leq$ $\langle x, x\rangle$ for $x \in X_{0}$. W extends to a bounded module map $W: X \longrightarrow Y$. Also

$$
\begin{aligned}
W \pi(a)(\pi(a)(e \cdot b)) & =w \pi\{a)(a \otimes b+N) \\
& =w\left(a^{2} \otimes b+N\right) \\
& =\rho\left(a^{2}\right)(d \cdot b) \\
& =\rho(a) \rho(a)(d \cdot b)=\rho(a) W(\pi(a)(e \cdot b))
\end{aligned}
$$

i. e., $W_{V} \pi(a)$ and $\rho(a) w$ agree on X_{0} for $a \in A$. Hence $W \neq(a)=\rho(a) W$ for $a \in A$. By 2.8, we get a bounded module map $\tilde{W}: X^{\prime} \longrightarrow Y^{\prime}$ extending W. It is clear from the proof of 2.8 that

$$
\langle\tilde{W} \tau, \tilde{W} \tau\rangle \leq\langle\tau, \tau\rangle \text { for } \tau \in X^{\prime}
$$

Let $\tilde{W}^{*}: Y^{\prime} \longrightarrow X^{\prime}$ be the adjoint of \tilde{W} and put $T=\tilde{W}^{*} W$, so $T \in O t\left(X^{\prime}\right)$ and $T=T^{*}$. For $\tau \in X^{\prime}$, we have $\langle T \tau, \tau\rangle=\langle\tilde{W} \tau, \tilde{W} \tau\rangle \leq\langle\tau, \tau\rangle$, so $0 \leq\left\langle T_{\tau}, \tau\right\rangle \leq\langle\tau, \tau\rangle$, hence $0 \leq T \leq I$. Since $\tilde{W} \tilde{\pi}(a)=\tilde{\rho}(a) \tilde{W}, \tilde{W}(a) \tilde{V_{V}} *=\tilde{W} * \tilde{\rho}(a)$ for $a \in A$. Hence for any $a \in A$, we have

$$
\begin{aligned}
T \tilde{\pi}(a) & =\tilde{W^{*}} * \tilde{W} \tilde{\pi}(a) \\
& =\tilde{W} * \tilde{\rho}(a) \tilde{W} \\
& =\tilde{\pi}(a) \tilde{W} * \tilde{W}=\tilde{\pi}(a) T, \quad \text { i. e., } T \in \tilde{\pi}(A)^{\prime}
\end{aligned}
$$

Finally, for $a \in A$,

$$
\begin{aligned}
\phi_{r}(a)=\langle T \tilde{\pi}(a) \hat{e}, \hat{e}\rangle & =\langle\tilde{W} \tilde{\pi}(a) \hat{e}, \tilde{W} \hat{\varepsilon}\rangle \\
& =\langle W \pi(a) e, W e\rangle \\
& =\langle p(a) d, d\rangle \approx \phi(a)
\end{aligned}
$$

These complete the proof of (i) and (ii).
(iii) The set $K=\left\{T \in \pi(A)^{\prime}: 0 \leq T \leq I_{X^{\prime}}\right\}$ is obviously convex; so is $[0, \phi]$. If $S, T \in K$ and $0 \leq \lambda \leq 1$, and $R=\lambda S+(1-\lambda) T$, then for $a \in A$,

$$
\begin{aligned}
\phi_{R}(a) & =\phi(a) \phi_{\lambda S+(1-\lambda) T}(a) \\
& =\langle(\lambda S+(1-\lambda) T) \tilde{\pi}(a) \hat{e}, \hat{e}\rangle \\
& =\lambda \phi_{S}(a)+(1-\lambda) \phi_{T}(a)
\end{aligned}
$$

i. e., $\phi_{\lambda S+(1-\lambda\rangle T}=\lambda \phi_{S}+(1-\lambda) \phi_{T}$.

Thus the correspondence preserves convex combinations.
Theorem 3.6. A completely positive map ψ on A satisfies $\phi \leq \phi$ if and only if there exists an operator $T \in O L\left(X^{\prime}\right)$ such that $0 \leq T \leq I_{X^{\prime}}, T \tilde{\pi}(a)=\tilde{\pi}(a) T$ for all $a \in A$, and $\phi(a)=\langle T \tilde{\pi}(a) \hat{e}, \vec{e}\rangle$ for all $a \in A$.

Proof. Suppose $\phi \in[0, \phi]$. Then by Theorem $3.5, \phi(a)=$ $\phi_{T}(a)=\langle T \tilde{\pi}(a) \hat{e}, \hat{e}\rangle$ and also by Theorem 3.5, it is clear. Conversely, since $\phi_{I}=\phi$ and $\sum_{t, j} b_{i} *\left(\phi-\phi_{T}\right)\left(a_{i} * a_{j}\right) b_{j}=$ $\langle(I-T) \hat{x}, \hat{x}\rangle \geq 0$, for $a_{1}, \cdots, a_{n} \in A, b_{1}, \cdots, b_{n} \in B$ and $x=\sum_{j=1}^{n} \pi\left(a_{j}\right)\left(e \cdot b_{j}\right) E X$, the proof is immediate.

References

1. W.B. Arveson, Subalgebras of C*-algebras, Acta Math. I23 (1969), 141-167.
2. S.K. Berberian, Lectures in Functional Analysis and Operator Theory, Springer-Verlag 1974.
3. T.W. Palmer, *-representations of U^{*}-algebras, Indiana Univ. Math. J. 20 (1971), 929-933.
4. W.L. Paschke, Completely positive mans on U^{*}-algebras,

Proc. Amer. Math. Soc. (1972), 412-416.
 Amet. Math. Soc. 1973.
6. W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. (1955), 211-216.
7. M. Takesaki, Theory of Oparator Algebras I, Springer-Verlag 1979.
3. M.A. Rieffel, Induced representations of C^{*}-algebra, Indiana Univ. Math. J. 1975.

Ch'angwon Natıonal University
Ch'angwon 641-240
Korea

Received March 2, 1983

