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OPERATORS THAT ARE POINTS OF JOINT 

SPECTRAL COUTINUITY

Jae Ok Choi and Byung Soo Lee

Introduction

Many results refe호호ing to the relation between numerical 

range and spectrum cr(A) of a single operator A

have been investigated by many authors (Barra [3j, 

Bonsall-Duncan [5], Hildebrandt [30丄 Maccluer [39j, Meng 

[40, 41j, Shiu [45, 46], Stampfli-Williams [49丄 Williams 

[53]). Especially- after Newburgh ([43], 1949) studied upper 

semi-continuity and lower semi-continuity of set-valued 

functions, functions, continuity of spectra and numerical 

호ange have been tremendously developed for a long time 

(Bezak-Eisen [4[, Conway-Morrel [13, 14, 152, Herrero 

[29], Luecke [35, 36, 37, 38], Murphy [421). As much of 

knowledge in a single operator has been carried to the 

analogous situation in the case of n-tuple of operato호s, it 

would be quite reasonable to try to study the relation be

tween joint spectrum and joint numerical range. Since its 

introduction by Arens-Calderon [21 the theory of joint 

spectra for commuting operators in a Hilbe호t space has 

recently been studied (Bunce [6丄 Cho-Takaguchi [8,10j,
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Coburn-Schechter [12丄 Curto 口6, 17, 18, 19, 20], Harte 

[28丄 Patel [44], Slodkowski〔47] and Vasilescu [51, 52]). 

Particularly, Abramov [1], Buoni [72, Cho-Takaguchi [9, 

11], Danrun [21], Dash [22, 23, 24], Fillmore [25?, 

Hildebrandt [31], Juneja [32], Taylor [50] and Zelazko 

[54] have investigated the relation between joint spectra 

and joint numerical range. Hence it would be reasonable 

to research what it means for joint spectra and joint nu- 

me흐ical range to be continuous. The purpose of this paper 

is to discuss the continuity of these two functions. In this 

paper we use the sequential definition and the metric de

finition to show that the joint spectrum is continuous for 

an 72-tuple of mutually commuting normal operators. As 

corollary we investigate the continuity of joint spectrum 

of an 72-tuple of analytic Toeplitz operators in connection 

with the continuity of joint numerical range.

1, Continuity of joint spectrum

Though the notion of joint spectrum of a family of 

elements in a commutative Banach algebra was first intro

duced by Arens and Calderon [2J, our interest here is the 

definition of joint spectra for an 力-tuple of bounded ope흐 

tors on a Hilbert space which has been given by Harte and 

others [27, 48]・ Let Cn be the //-dimensional complex 

space, A= (A】,A2 ,…,A„) an n-tuple of commuting 

operators on a complex Hilbert space H with scalar product 

〈,〉and associated norm, and B(H) the Banach algebra 

of bounded linear operators on H9 then the double com- 

mutant 勿 of the set S= {&,血，…，is a weakly 
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closed abelian algebra containing S and the identity.

Definition 1. Let A= (Aj y A2 y ••- 9 An) be an 7?-tuple of 

commuting bounded linear operates on H, then the point 

人=(4 , M ,…，如)of Cn is in the joint spectrum j(A) of 

4 relative to 勿 if and only if for all 5 B2 , … , Bn in 이八

+ —22) + …+Bn(An— Equivalently

* i응 in bj(4) if and only if the ideal in %，generated by 

{孔一&： l<.i<n} is proper. Equivalently (為.—，益―, 

,■* 5 —A„) is singular.

It is well known, in fact, it can be easily shown that 

AA) is non-empty and compact in Cn. That is, the joint 

spectrum is a function defined on whose range

consists of non-empty compact subsets of Cn.

Example 1. In the case of a single operator A the de

finition of joint spectrum reduces to the usual definition 

of spectrum. The Koszul-complex for this case looks like 

0 H-- >0 and A—11 is non-singular if and only if

ker (A-2Z) = {0} and Im(A一近)=H [331.

Definition 2. For any n-tuple A= (Ax, A2,…,An) of 

Gpe흐ators, the following non-negative numbers

이F+山*히卩+ ... 끼Ik기 = 1}

and 1(&) = sup{시치2 + |시2+... +卩시2)1/2：徉 s, 如 … , 4)) 

U ay(A)} are called the joint operator norm and the joint 

spectral radius respectively.

Theorem 1. Joint spectrum is upper semi-continuous.

Proof. First we prove by the metric definition.
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Let K be the set of (Aj 9 A2 ? , An) where

(£ = 1,2,…,n) are singular operators on a fixed Hilbert space 

H, and given an n-tuple of operators A= , A2 f …，Ara), 

let q心) be the distance from A~2 to K. The function G 

is continuous. If AQ is a효 open set that includes joint 

spectrum crj(A) of A, if A is the closed disc with center 

0=(0,0,…，0) and radius l + and if 人=(為，；板，…，爲:) 

U』一then. ©(Z)〉0. (This does depend on K being 

closed； if ©Q)=0, i. e.,涉(厶一為 K)=。， then A— 1 K,

i. e., 2 U b3 (-A) < )

Since J —Jo is compact, there exists a positive number 

£ such that 令(V ior all 2 in 4-/1)； there is clearly 

no loss of generality in assuming that c<l. Suppose that 

\\A—B\\j where B =(」位,、&,…，Bn). It iollo-ws that 

if — Aq ? then \ | (A一R)一(B—涉(々一2, K'). 

This implies that B— Z is not in K, and hence that M is 

not in bj(B). Hence o\(B) is disjoint from 4 —/l0. At the 

same time, if LUbj(B), then |기《］一団匕《丄4||】 + 1丄4 —B］, 

V〔1+||&L, so that o\(B) U 4. These two properties of 

say exactly that bj(8)U』o； hence the joint spec

trum is upper semi-continuous. Next we prove by the 

sequential defi꾜iticm. Suppose that Av-- > A where

(A1WJ, A2tn ,…，&5), A.= (& , A2 ,…，A), and #=(内,同… 

,四)eiim choose j搜=(爲* , M,、，…，"”)in s(Z技)

m

so that for a suitable subsequence 烈氏----，卩. Since Air k —

為"are singular, where Am = (*咂，&心，…,&心)，才'= 

(&咛，‘2m互,J■,為用］)and丄4〔胡五一旗心 *，丸一佝(z-—》宠) 

and the mapping of the set of invertible operators onto 

itself defined by A-- > A"3 is continuous, At — are 
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singular, so that p. belongs to a/A). Hence the proof is 

complete.

In general the spectrum is not continuous. The following 

shift operator is an example. If k^=l, 2,3 and if 如二8, 

let Ak be the two-sided weighted shift such that Aken is 

en+1 or according as n 0 or 九=0 (put l/oo —0),

thenis not continuous. ([26] problem 102.)

Theorem 2. The restriction of joint spectrum to the sec of 

^-tuples A= (Ax 5 A2 s …An) of mutually commuting normal 

operators is continuous.

Proof, To prove the statement, it is to be proved that 

if {Am} is a sequence of 刀Tuples of mutually commuting 

normal operators and -- > A, then。、(/以二 lim
rd

When is 2=(為，确，•••，人。not in lim a7(Au)? Exactly 
>'A

when the distance from 1 to crJ(AW2) does not tend to 0 as 

筮一予 8； in other wo호ds, exactly when there exists a positive 

number s such that 日(2,。、(/顷1)) M e ior infinitely many 

values of n. The inequality says that l/d(^ 2Z) < 1/e 

whenever 2'=(為'，人/,…，為')GThis, in turn, says 

that not only is 人 absent from so that Aiai~~ are

invertible (z —1,2,…，？z), but, in fact,厂丿((/”，一』)t)= 

sup {이如 2+|庭2+   + L妇少/2 ： 卩 =( 内必 2,  —Gu 

bj((4洌一，2)T)}M sup I內|+ sup Wl+ ......  + sup 0丄 where

W b((&L4)T). This equals to 户((4冷一％)~‘)+ 尸((，扳初 

+............ + 尸 ((Ag—為)~') = 一 차) + l/r(A2^~~

為)+ …… + 1/歹(厶^一摭)M 1/衫(為丫) M顼丄Hence r/CA,- 

人)T) M 1/公 where r(?4) —sun {|시 : 1 W” (&)} is the spectral
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radius of a single operator A, Since for a commuting 

n-tuple of normal operators the joint spectral radius is the 

same as the joint operator norm [9], accordingly the 

contrapositive of what is to be proved is that if 人=(4,為， 

…，為)and a subsequence {A^-} are such that ||(/*，一无广屮项 

< 1/s for some then Al — 2i are invertible 0 = 1,2,…,h). 

There is no loss in simplifying the notation and assuming 

that 11(4知T广屮for all m. Since ||(々一2广一 

(& 一无)一屮广비|(&曹一沙t((如一2) 一 (&牌一 乃) - (&一人)ELM 

||(&'一』)叫顷||4 — 出屮广||(&一2)2山%(1/£2)||4一4찌|注辺 

since AK1—>A, it follows that the sequence {^)-1} 

converges to some ??-tuple of mutually commuting normal 

operator B= (Bx 5 B2 ? ■•- ? Bn), say. Since (A—— 

lim (AM —2) -lim 2)-1 —lim — (Aw，—2)-1 —I. And
f I m m

similarly, of course, —2) =L Hence the proof is 

complete.

Definition 3. The joint numerical range W3(A) is defined 

as the set of all 宣-tuples of complex numbers {(〈&h, x)9 

〈心次〉, … ,〈Aw次〉) : Ik기| = 1}.

In fact, Wj(A) is a convex subset of Cn. That is, the 

joint 교ume호ical【an잉。is a functio교 defined on B(H) whose 

range consists of convex subsets of Cn.

Since the Hausdorff metric is defined for compact sets, 

the appropriate function to discuss is cZ("Q4)), the 

closure of TT^(A).

Theorem 3. The function cl^Wj^A}) is continuous with 

respect to the uniform operator topology [34丄

Corollary. If 厶=(/爲，A2,…，An) is an zz-tuple of analytic
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Toeplitz operators, then convh the convex hull of

is continuous.

Proof. Convh =cZ(M7；(A)) [9丄
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